Control de Velocidad Directo de un Aerogenerador de 9 MW

Contenido principal del artículo

Adrián Pozo
Eduardo Muñoz
Edy Ayala
https://orcid.org/0000-0003-2528-4380

Resumen

El siguiente artículo muestra la descripción, implementación y validación de una estrategia de control para el seguimiento del punto máximo de potencia (MPPT) de un aerogenerador de inducción doblemente alimentado (DFIG). Esta estrategia se desarrolla conforme la teoría del control de velocidad indirecto (ISC) y la teoría de observadores de estado tomando como variable de ingreso la velocidad angular de la hélice. Este mecanismo de control permite realizar el seguimiento del MPPT, llevando así el Coeficiente de Potencia (Cp) a su valor optimo durante la operación del aerogenerador. El controlador, entre sus características principales, está configurado para trabajar con la incorporación de estímulos aleatorios de viento lo cual permite anticipar su respuesta a una perturbación. Para los experimentos se seleccionó un aerogenerador de 1,5 MW, este modelo se implementó por medio de Matlab y el software Fatiga, Aerodinámica, Estructuras y Turbulencia FAST.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Detalles del artículo

Cómo citar
Pozo, A. ., Muñoz, E. ., & Ayala, E. (2021). Control de Velocidad Directo de un Aerogenerador de 9 MW. Revista Técnica "energía&Quot;, 18(1), PP. 11–18. https://doi.org/10.37116/revistaenergia.v18.n1.2021.435
Sección
SISTEMAS ELÉCTRICOS DE POTENCIA

Citas

[1] World Wind Energy Association, «World Wind Energy Report 2010,» WWEA, 2010.
[2] W. Zhi-Nong, «The intelligent control of DFIG-based wind generation,» Conference on Sustain Power Gener. Supply, pp. 1-5, 2009.
[3] E. Ayala y S. Simani, «Perturb and observe maximum power point tracking algorithm for permanent magnet synchronous generator wind turbine systems.,» Proceedings of the 15th European Workshop on Advanced Control and Diagnostics., pp. 1-11, 2019.
[4] S. Muller, M. Deicke y R. Doncker, «Doubly-Fed Induction Generators Systems for Wind Turbines,» IEEE Industry Applications Magazine, 2000.
[5] T. L. Sow, Nonlinear control of the wind turbine at DFIG for a participation to the regulating of the frequency of the network, Quebec, 2012.
[6] G. Abad, J. Lopez, R. A. Miguel, L. Marroyo y G. Iwanski, Doubly Fed Induction Machine, WILEY, 2011.
[7] The MathWorks Inc., Matlab, Massachusetts.
[8] National Renewable Energy Laboratory (NREL), Fatigue Aerodynamics Structures and Turbulence, 2020.
[9] E. Tremblay, S. Atayde y A. Chandra, «Direct Power Control of a DFIG-based WECS with Active Filter Capabilities,» IEEE Electrical Power and Energy, 2009.
[10] M. Magdi y O. Mojeed, «Adaptive and Predictive Control Strategies for Wind Turbine Systems: A Survey,» IEEE Journal of Automatica SINICA, 2019.
[11] M. Hallak, M. Hasni y M. Menaa, «Modeling and Control of a Doubly Fed Induction Generator Base Wind Turbine System,» 3rd CISTEM’18, 2018.
[12] P. Gajewski y K. Pienkowski, «Direct Torque Control and Direct Power Control of wind turbine system with PMSG,» Wrocław University of Technology, Department of Electrical Machines, Drives and Measurements, 2016.
[13] N. Mendis, K. Muttaqi, S. Sayeef y S. Perera, «Standalone Operation of Wind Turbine-Based Variable Speed Generators With Maximum Power Extraction Capability,» IEEE Transactions on Energy Conversion, vol. 27, nº 4, pp. 822-834, 2012.
[14] NREL, Simulation for Wind Turbine Generators—With FAST and MATLAB-Simulink Modules, United States: NREL, 2014.
[15] J. Mohammadi, S. Vaez-Zadeh, . S. Afsharnia y E. Daryabeigi, «A Combined Vector and Direct Power Control for DFIG-Based Wind Turbines,» IEEE Transactions on Sustainable Energy, vol. 5, nº 3, 2014.