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Abstract

Power system planning and operation are 
meaningfully based on a number of analyses which 
entail steady-state and dynamic simulations. In 
this regard, modelling the power system with 
enough detail is a basic requirement mainly for 
those applications that are based on an accurate 
prediction of the system dynamic response, such 
as the design of protective strategies and control 
schemes. Most models correspond only to a 
mathematical representation, whose parameters 
need to be firstly adjusted or identified based 
on a rational process of model validation which 
frequently employs experimental data. This 
paper proposes a parameter estimation method 
for accomplishing the model validation of power 
systems through an iterative software-in-the-loop 
(SIL) simulation, implemented via mean-variance 
mapping optimization (MVMO) in DIgSILENT 
PowerFactory, which allows comparing the 
simulation results with records obtained from 
field tests. The proposed method is then used to 
perform the model validation of the automatic 
voltage regulator (AVR) of Coca Coco Sinclair, 
Ecuador’s largest hydroelectric power plant. The 
obtained results are finally compared with two 
other similar approaches: i) the “Model Parameter 
Identification” object of PowerFactory, and ii) 
the “Parameter Estimation” toolbox of Matlab-
Simulink. Comparisons show the benefits of the 
proposal to overcome limitations of the other two 
methods regarding accuracy, constraints and SIL 
simulation capabilities.

Index terms− Parameter estimation, Model 
validation, AVR, MVMO, PowerFactory, 
Simulink.

Resumen

La operación y planificación de los sistemas de 
potencia son en gran medida basadas en una serie 
de análisis que involucran el uso de simulaciones 
dinámicas y en estado estacionario. En este contexto, 
el modelado a detalle de un sistema de potencia es 
un requerimiento básico para las aplicaciones que 
se basan en una predicción precisa de la respuesta 
dinámica del sistema, como el diseño de estrategias 
de protección y esquemas de control. La mayoría 
de los modelos únicamente corresponden a una 
representación matemática, cuyos parámetros 
deben ser, en primera instancia, ajustados o 
identificados con base en un proceso racional de 
validación de modelos que emplea frecuentemente 
datos experimentales. Este trabajo propone un 
método de estimación paramétrica para lograr 
la validación de modelos en sistemas de potencia 
a través de una simulación software-in-the-loop 
(SIL) implementada mediante la optimización de 
mapeo media-varianza (MVMO) en DIgSILENT 
PowerFactory, la cual permite comparar los 
resultados de las simulaciones con registros obtenidos 
de pruebas de campo. El método propuesto es luego 
utilizado para realizar la validación del regulador 
automático de voltaje (AVR) de Coca Codo Sinclair, 
la planta de generación hidroeléctrica más grande 
de Ecuador. Los resultados obtenidos son finalmente 
comparados con dos enfoques similares: i) el objeto 
“Model Parameter Identification” de PowerFactory 
y ii) la herramienta “Parameter Estimation” de 
Matlab-Simulink. Las comparaciones muestran 
las bondades de la propuesta para sobrellevar 
limitaciones de las otras dos metodologías, como 
precisión, restricciones y capacidad de simulación 
en SIL.

Palabras clave− Estimación de parámetros, 
Validación de modelos, AVR, MVMO, 
PowerFactory, Simulink.
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identification, or iii) opting for parameter estimation 
(or identification) [5]. The selection of the most feasible 
alternative will depend on the available information. 
For instance, the goal of system identification is to 
determine a mathematical model of a dynamic system 
based on experimental data. This kind of procedure is 
mainly opted when there is no confident information 
related to the physical model configuration and thus 
the aim is to determine the mathematical model. On the 
other hand, parameter estimation (or identification) is 
a good alternative when there is enough confidence on 
the available model structure so the model refinement 
can only focus on determining the best parameters 
that allow obtaining the best system or component 
response. 

For the modeling of power plants, the models, 
both of the generators and their controllers, should 
be validated through field tests at commissioning 
(mainly for new plants) [4]. However, this procedure 
is not always performed. In these cases, an appropriate 
process for model validation should be carried out 
via application of adequately controlled field tests. 
Afterwards, system identification or parameter 
estimation is to be performed in order to accomplish 
the model refinement stage.

Based on the previously stated facts, this 
paper proposes a parameter estimation method 
for accomplishing the model validation of power 
systems. This method exploits the potential of the 
mean-variance mapping optimization (MVMO) [6] 
for solving complex optimization problems with 
an iterative software-in-the-loop (SIL) simulation 
which allows comparing the simulation results with 
records obtained from field tests. To this aim, the 
proposed method takes advantage of the flexibility 
of DIgSILENT PowerFactory for incorporating new 
routines via its scripting objects, i.e. DIgSILENT 
Programming Language (DPL) and DIgSILENT 
Simulation Language (DSL). 

The proposed method is then used to perform the 
model validation of the automatic voltage regulator 
(AVR) of Coca Codo Sinclair – CCS, Ecuador’s largest 
hydroelectric power plant, as part of a comprehensive 
methodology for power system stabilizer (PSS) tuning 
[2]. In order to highlight the benefits of the proposed 
method, obtained results are finally compared with two 
other similar methodologies: i) the Model Parameter 
Identification object of PowerFactory, and ii) the 
Parameter Estimation toolbox of Matlab-Simulink. 
Comparisons show the feasibility of the proposal 
to overcome limitations of the other two methods 
regarding accuracy, constraints and SIL simulation 
capabilities.

This paper is organized as follows: section 2 
presents general concepts related to power system 
model validation. In section 3, the proposed parameter 
identification methodology is described. Section 4 

1. INTRODUCTION

Power System planning and operation are based 
on a number of analyses concerning steady-state 
and dynamic system behavior simulations. In these 
kinds of studies the actual power system behavior 
is predicted using computer based simulations. For 
this purpose, the several physical components of 
the system must be adequately modeled in order to 
accurately represent the performance of the power 
system [1].

The aim is to mathematically represent the 
power system through a set of differential algebraic 
equations (DAE), whose solution represents the time 
domain dynamic system trajectory. 

Modelling the power system with enough detail 
is a basic requirement mainly for those applications 
that are based on an accurate prediction of the system 
dynamic response, such as the design of protective 
strategies and control schemes. For instance, the 
tuning of power system stabilizers (PSS) requires an 
accurate-enough modeling of, at least, a simplified 
single machine infinite bus (SMIB) representation 
[2]. In this simplified model the generator and its 
automatic voltage regulator (AVR) must be modeled 
in order to satisfy minimum accuracy constraints. 
Moreover, the simulation software has to be capable 
of handling detailed models and guarantying reliable 
results [3].

In this respect, after defining a specific power 
system model to be analyzed, a basic query that arises 
is: “does it correspond to a valid model?”, and the 
answer is: not necessarily, since the implemented 
model typically corresponds to a mathematical 
representation, whose parameters need to be firstly 
adjusted or identified based on a rational process of 
model validation [4].  

In this connection, a multifaceted process of 
system model validation is presented in [4]. This 
process combines both steady-state and dynamic 
behavior obtained from simulations to structure a 
response database that is further compared with real 
power system measured responses. Afterwards, if this 
comparison is not good enough, refinements to the 
model must be made. This refinement can be done for 
each component individually or for an entire electric 
power area (i.e. system wide model validation [4]). In 
both cases, the general procedure needs to compare 
the time-domain responses of determined electric 
variables measured in field (reference signals) with 
those corresponding to the simulations. 

If determined that refinements to the model need 
to be performed, it is possible to apply three typical 
alternatives: i) applying engineering judgment and 
knowledge-based criteria (which is obviously not a 
formal mathematical choice) [4], ii) pursuing system 
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contains the application of the proposal for estimating 
the parameters of the AVR of CCS and the results 
obtained from the comparison with two other similar 
tools. Finally, conclusions are summarized in Section 5.

2. POWER SYSTEM MODEL VALIDATION

Power system real-time decision making is directly 
dependent on the predictions of the actual system 
behavior, which are obtained from computer based 
simulations. In this connection, an adequate system 
model will ensure accurate-enough simulations, and 
therefore, proper decision making regarding control 
actions [1]. 

For this purpose, the various system physical 
components should be modeled with enough detail 
and precision, depending on the phenomenon to 
be analyzed and its corresponding time-frame of 
evolution. 

Fig. 1 illustrates the importance of system 
modeling. The dashed circle labeled “Power system 
model” represents the performance of the power 
system acquired from mathematical computer-based 
dynamic simulations. The continuous circle labeled 
“Actual power system” represents the system actual 
behavior. The intersected shaded area denotes the 
part of the model which closely represents the actual 
system. Ideally, both circles should entirely overlap, 
indicating that the system model unerringly represents 
the actual system [1].

Actual system 
does not 
behave as 
model predicts

Power system 
model

Actual power 
system

Actual system 
behavior 

cannot be 
predicted by 

model

System behaves 
as predicted by 

simulation

Figure 1: System Model Performance Regarding 
Actual System Behavior [1]

In practice, the shaded area has to be as large 
as possible. In this regard, it is extremely necessary 
to validate the system model in order to ensure that 
the results will represent the system behavior with 
sufficient accuracy. This fact is particularly important 
mainly when the results are used to orient the tuning 
and response of control actions, such as, for instance, 
the tuning of power system stabilizers (PSS), since 
the success of this procedure will be extremely 
dependent on a good enough system representation. 

The only reliable way to validate the accuracy of 
system models is to carry out field tests, or monitor 

real perturbations (via smart measurement devices, 
such as IEDs, perturbation recorders, or PMUs), 
and compare the results with those obtained from 
model-based simulations [1]. In this connection, a 
methodology for validating power system dynamic 
models (focused on AVR model validation), based on 
Mean-Variance Mapping Optimization and field-tests 
records, is presented in the following subsections.

3. MODEL VALIDATION METHODOLOGY

Since the success of the PSS tuning process 
presented in [2] is directly dependent on accurate-
enough simulations (obtained from computer-based 
time-domain or modal analysis), the design of a 
previous stage concerning system model validation is 
mandatory. 

Considering that all physical components have to 
be adequately modeled for simulations to accurately 
represent the real-time dynamic power system 
behavior [1], detailed-enough system modeling is a 
basic requirement for the PSS tuning methodology 
proposed in [2]. Thus, the model of the reduced 
system (mainly generator and AVR models) has to be 
reliable, which is only possible via the application of a 
robust-enough model validation methodology.

Due to the complex nature of power system 
dynamics, the optimization problem of the parameter 
identification of dynamic models possesses a 
discontinuous multimodal and non-convex landscape 
that could not be successfully handled by several of 
the existing heuristic optimization algorithms, since 
their searching performance is sensitive to appropriate 
parameter settings, which entails a high risk of 
premature convergence and local stagnation [7], [8]. 

To overcome these drawbacks, this paper sketches 
a general time-domain parameter identification 
technique based on the MVMO heuristic optimizer, 
which is particularly suited for solving this task. This 
method uses field-test signal records as reference 
signals, which allow achieving high confidence levels 
on the underlying simplified models, and ensures 
an accurate estimation of parameters belonging to 
dynamic components. 

The proposed parameter identification method 
begins with the definition of the dynamic models 
that suitably represent a specific component of the 
system (i.e. AVRs, HVDCs, Wind Farms, GOVs, 
Dynamic Equivalents, etc.). Next, an initial guess of 
the parameters to be identified is set. Time domain 
simulations are then performed for a specific set of 
pre-defined perturbations (i.e. actual PMU recorded 
contingencies or specific field-test records) that 
have occurred in the system. Subsequently, a set 
of electric signals, which are compared with the 
measured reference signals corresponding to the 
above-mentioned events, is selected. Afterwards, 
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(1)

(2)

Subject to:

(3)

where yn(t) and ynref(t) denote n-th recorded electric 
reference signals, wn stands for n-th weight signal 
factor,  is the simulation period, p is the number 
of disturbances or field-tests (np), αnp is the np-th 
disturbance weight factor, and xj constitutes the model 
parameters. Moreover, any other additional constraints 
can be included in the model if necessary [6].

3.1. AVR model validation

The proposed approach (that in fact can be 
used to validate any dynamic model of any power 
system dynamic component) is used to estimate the 
parameters of an AVR model, with the later aim of 
making the PSS tuning process feasible. 

For this purpose, the potential of DIgSILENT 
PowerFactory has been exploited in order to implement 
the complete procedure sketched in Fig. 2. This 
implementation is based on the software functionality 
that allows PowerFactory to offer versatility to model 
new components, as well as to develop new calculation 
routines by using its programming languages: DSL 
and DPL.

This implementation will be described in the 
following subsections.

3.1.1 DSL implementation

DIgSILENT Simulation Language (DSL) allows 
programming control models of any power system 
element, including protection devices and it also 
permits developing other components or routines 
oriented to run along with the time domain simulations.

The DSL model structure comprises three parts 
[9]:

•	 Interface: To set the model name, title, 
classification and set of variables.

•	 Code definition: To define the properties of 
parameters and initial conditions.

•	 Equation code: To include all equations 
necessary to define the simulation model, 
i.e. differential equations (state equations) 
that describe the relationships between input 

the objective function for parameter identification is 
structured and the underlying optimization problem is 
solved through MVMO. 

The parameter identification procedure is 
schematically summarized in Fig. 2. Likewise, the 
basic scheme for parameter identification, embedded 
in the iterative loop of Fig. 2, is expanded in Fig. 3, 
illustrating its application for validating the Automatic 
Voltage Regulator (AVR) model of a Power Plant.

Figure 2: Framework of the Proposed Identification Approach

Figure 3: Parameter Identification of Power System 
Components

Considering the difference between recorded 
reference signals and the selected signals from 
dynamic simulations, the parameter identification, 
conceived as an optimization problem, can be 
formulated as follows:

Minimize OF (objective function):
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and output signals. These relationships can 
vary from simple linear functions (transfer 
functions between an input and an output) 
to highly complex nonlinear functions (non-
continuous functions of multiple inputs and 
multiple outputs).

DSL language uses the modeling of block 
diagrams (or transfer functions in terms of Laplace or 
frequency domain) in order to develop a DSL model, 
since this is the most common way to find information 
regarding control devices.

In this specific case, the DSL functionality has 
been used in order to perform two tasks:

•	 To implement the AVR model.

•	 To compute, at each integration step, the 
function g(t) , which is a fundamental 
component of the objective function OF . To 
this aim, the Composite Frame presented in 
Fig. 4 has been designed in order to determine 
g(t) as follows:

(4)

where w = 100 (weight factor), Efsimu is the 
simulated induced voltage (AVR output) 
and Efreal is the recorded induced voltage 
(from field tests). In this particular case, only 
one field test has been carried out using a 
rectangular pulse response test (it could also 
be a step response test) performed at the AVR 
reference input signal (usetp).

Efreal constitutes the recorded reference 
signal that comes from the field test. These 
time discrete values are then stored in a 
“Measurement File”, while the corresponding 
simulated values (Efsimu) come from the 
output of the corresponding AVR, previously 
implemented in DSL. Both recorded and 
simulated signals are used to compute g(t) 
inside the Obj_cal block.

Ef_FIELD: 

Obj_cal
ElmDsl*

0

1Simul_Ef
ElmDsl*

Meas_Ef
ElmFile*

Ef_FIELD: 

Efreal

Efsimu

D
Ig

SI
LE

N
T

Figure 4: Composite Frame for g(t) Computation

3.1.2 DPL implementation

DIgSILENT Programming Language (DPL) 
offers an interface to develop automatic tasks in 
DIgSILENT Power Factory. This functionality allows 

the creation of new user-defined calculation functions 
[9].

The main features of DPL are: particular 
programming language, similar to C++, arithmetic 
and standard functions availability, logic functions, 
loops: do {...} while (...), conditionals: if (...) then 
{...} else {...}, access from the script to any system 
variable or parameter, use of each command inside 
the script, ability to automatically define results and 
create graphs, among others.

The object of the DPL command constitutes the 
central element. This object allows the connection of 
different parameters, variables or objects to various 
functions or internal elements in order to present 
results or change parameters. The DPL script is 
designed to run a set of operations to communicate 
itself with the database in order to read and/or change 
settings, parameters or results directly in the database 
objects. 

Based on the specified features of DPL 
functionality, its potential has been used to perform 
the optimization task depicted in Fig. 2. Therefore, the 
MVMO implemented in PowerFactory by [6] has been 
adequately adapted to solve the optimization problem 
defined by -. To this aim, the objective function  must 
be implemented into the “Subroutine for function 
evaluation” as explained in [6]. This implementation 
uses as input the time domain discrete values of g(t) 
that are periodically stored in a Result File (ElmRes) 
at every integration step. This file is then loaded via 
the DPL script and its stored data is used to compute 
the OF. For this purpose, the integration method 
based on the trapezoidal rule presented by  has been 
also implemented into the “Subroutine for function 
evaluation” DPL.

(5)

4. AVR MODEL VALIDATION RESULTS

The process described in Section 3 is applied 
to Coca Codo Sinclair (CCS), Ecuador’s largest 
generation hydroelectric power plant (1500 MW), 
with the procurement of great results. 

First, a vastly employed and amply described field 
test consisting on a rectangular pulse response to mimic 
a disturbance has been applied to the AVR of CCS’ 
unit U1. This test consists in applying a rectangular 
pulse of 5% during 1 s at the reference input signal 
(usetp) of the AVR presented in Fig. 5 under a no-load 
operation. This pulse produced a response in the AVR 
output (uerrs) which was adequately recorded using, 
in this case, a perturbation recorder available at the 
power plant.  



170

Edición No. 14, Enero 2018 

iteratively performed in order to evaluate the OF at 
each iteration. This evaluation is then used for running 
the MVMO. 

In this particular case, six parameters are selected 
to be identified via the proposed approach: TA1, TA2, 
TA3, TA4, KAVR and TE. It is also important to 
highlight that, based on the technical specifications of 
the AVR of CCS [10], two additional constraints were 
to be included in the optimization model:

(6)

(7)

Fig. 8 shows the convergence of the objective 
function after the optimization process has finished 
(which comprises a total elapsed time of 136.6 s for 
1000 function evaluations considering an integration 
step size of 1 ms). It can be noticed that the minimum 
value is reached at around 550 function evaluations.

Finally, the obtained optimum parameters 
are uploaded to the model in order to carry out a 
comparative simulation. Fig. 9 presents a comparison 
between the field-test-recorded AVR output signal 
(Efreal) and the simulated AVR output signal (Efsimu) 
obtained with the optimum parameters. It is to be noted 
how the simulated AVR output signal (blue dotted 
line) closely resembles the actual dynamic response 
obtained from field test (red continuous line).  
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Figure 8: Objective Function Convergence

Fig. 6 presents the AVR output signal (red 
continuous line) recorded during the field test when 
the pulse was applied to the reference input signal 
(blue dotted line).
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Figure 6: Pulse and Response Test Results

The AVR output recorded signal is then used 
as the reference signal (Efreal) in order to perform 
the proposed parameter identification approach. 
To this end, a proper no-load operation model 
has been previously implemented in DIgSILENT 
PowerFactory. This simplified model is depicted 
in Fig. 7 (note that the model requires a load to be 
initialized; however, this load is parameterized with 
a negligible value).
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Figure 7: No-load Operation CCS Unit 1 Model

Once the simplified model has been implemented, 
the complete procedure, sketched in Fig. 2 and 3, is 
performed via the DPLs implemented in PowerFactory 
(i.e. the MVMO [6] and the objective function 
subroutine). For this, time domain simulations are 
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Figure 5: Coca Codo Sinclair’s AVR Model
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Figure 9: Measured vs. Simulated AVR Output Signals

In order to highlight the performance of the 
proposed approach, it has been compared with two 
other parameter estimation methodologies. That 
is: i) the Model Parameter Identification object of 
PowerFactory, and ii) the Parameter Estimation 
toolbox of Matlab-Simulink.

Regarding the application of the model parameter 
identification object of PowerFactory, it is important 
to note the following features:

•	 The application can, in fact, run along with 
any time domain simulation, making the SIL 
simulation viable.

•	 The only possible constraint is that each 
parameter value can be greater than zero. 
This feature constitutes a great limitation, 
since it is not possible to include realistic 
physical constraints.

As far as the functionality of the parameter 
estimation tool of Matlab-Simulink is concerned, the 
following features must be considered:

•	 The application cannot run along with any 
time domain simulation, making the SIL 
simulation impossible.

•	 Following the last comment, the application 
needs not only measurements of the output 
signal of the controller but it also requires 
records of the controller input. This aspect 
can be a limitation in those cases where 
measurement points in the field are not 
available (that in fact was the case of CCS 
where the controller input could not be 
measured).

As stated, the parameter identification process of 
the AVR of CCS was also run with the two already 
presented additional tools, considering proper 
adjustments in order to minimize the effects of the 

above mentioned limitations. In the case of Matlab-
Simulink, the unavailability of measurements of the 
AVR input was tackled assuming simulations with 
typical parameters (obtained from [10]) as pseudo-
measurements.

Fig. 10 and 11 depict the results obtained with the 
model parameter identification object of PowerFactory 
and the parameter estimation tool of Matlab-Simulink, 
respectively, after replacing the optimum parameters 
resulted from each method. From all results, it is 
possible to observe that both the proposed method 
and the PowerFactory object allow obtaining a good 
performance in matching the measured output signal, 
with comparable dynamic behavior. Even more, it 
is possible to observe that around the peak value, 
the PowerFactory object seems to outperform the 
proposed method. On the other hand, the Matlab-
Simulink tool shows larger errors. This is obviously 
caused by the limitation of Matlab-Simulink of not 
allowing SIL simulations. 

In order to make a quantitative and more technical 
comparison, the mean square error coefficient (MSE) 
[3] of all results, with respect to the measured AVR 
output signal, is computed and presented in Table 1.

Figure 10: Measured vs. Simulated AVR Output Signals with 
the “Model Parameter Identification” Object of PowerFactory

Figure 11: Measured vs. Simulated AVR Output Signals with 
the “Parameter Estimation” Tool of Matlab-Simulink

MSE is the squared norm of the difference 
between real data and the approximation divided by 
the number of elements, as shown by , and allows 
obtaining an average quantification of the accuracy of 
each estimation. The closer this coefficient is to zero, 
the better the accuracy of the parameter estimation is.
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Parameter Estimation toolbox of Matlab-Simulink, 
has been also presented. The results have shown the 
feasibility of the proposal to overcome limitations of 
the other methods related to accuracy, constraints and 
SIL simulation capabilities.
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Results show that the proposed methodology 
outperforms the other two methods for parameter 
estimation in terms of MSE, which will translate into 
better identification accuracy. In addition, although 
the results of the parameter identification object of 
PowerFactory seem to be almost as accurate as those 
obtained with the proposed MVMO-based method 
(and even more accurate around the peak as shown 
in Fig. 10); these parameters are not completely 
correct. In fact, since it is not possible to consider 
sophisticated constraints (such as  or ), the results 
have shown that this particular requirement was not 
met (i.e. TA2 > TA1 in the PowerFactory method), 
and thus neither were the technical specifications.

Table 1: Parameter Identification Performance 
for each Method

METHOD MSE
MVMO-based 0.058
PowerFactory 0.061

Matlab-Simulink 0.202

As a summary of the obtained results, the 
proposed MVMO-based parameter estimation 
method has demonstrated to offer superior features in 
comparison with the other methods, both in giving a 
better average accuracy, this noticed in a lower MSE, 
and in accomplishing more robust results since it 
allows considering realistic physical constraints.

5. CONCLUSIONS 

This paper proposes a parameter estimation 
method for accomplishing the complex task of 
dynamic model validation of power systems. The 
proposal is based on the mean-variance mapping 
optimization (MVMO) algorithm and uses records 
from field tests as the target or reference signals. The 
proposed method takes advantage of the software-in-
the-loop (SIL) simulation feasibility for comparing 
the simulation results with records obtained from 
field tests. Also, a practical implementation of the 
proposed method has been described by using the 
DIgSILENT Programming Language (DPL) and 
DIgSILENT Simulation Language (DSL) scripting 
options. 

The proposed method has been applied to 
estimate the parameters of the automatic voltage 
regulator (AVR) model of Coca Coco Sinclair CCS, 
showing a superb performance in both accuracy and 
robustness. A fair comparison with other two similar 
methodologies, that is: i) the Model Parameter 
Identification object of PowerFactory, and ii) the 
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