Llumitaxi et al. / Filtro Activo de Potencia (APF) Híbrido con integración de PV para la Mejora del Perfil de Tensión
[14] M. Montufar, W. Pavón, M. Jaramillo, and S.
Simani, “Control Strategy Applied to Smart
Photovoltaic Inverters for Reactive Power Exchange
Through Volt-Var Control to Improve Voltage
Quality in Electrical Distribution Networks BT -
Communication, Smart Technologies and
Innovation for Society,” 2022, pp. 357–366.
[15] Z. Hekss et al., “Hybrid Automaton Control of Three
Phase Reduced Switch Shunt Active Power Filter
Connected Photovoltaic System,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 12847–12852, Jan.
2020, doi: 10.1016/J.IFACOL.2020.12.1986.
[16] K. Ravinder and H. O. Bansal, “Investigations on
shunt active power filter in a PV-wind-FC based
hybrid renewable energy system to improve power
quality using hardware-in-the-loop testing
platform,” Electr. Power Syst. Res., vol. 177, p.
105957, Dec. 2019, doi:
10.1016/J.EPSR.2019.105957.
[17] X. Song, Y. Wang, Z. Zhang, C. Shen, and F. Peña-
mora, “Economic-environmental equilibrium-based
bi-level dispatch strategy towards integrated
electricity and natural gas systems,” Appl. Energy,
vol. 281, no. October 2020, p. 116142, 2021, doi:
10.1016/j.apenergy.2020.116142.
[18] J. Yu, S. Ding, Y. Wang, W. Wu, and M. Dong, “The
engineering design and optimization of main circuit
for hybrid active power filter,” Int. J. Electr. Power
Energy Syst., vol. 46, no. 1, pp. 40–48, Mar. 2013,
doi: 10.1016/J.IJEPES.2012.10.037.
[19] A. Tamer, L. Zellouma, and M. Toufik, “Adaptive
linear neuron control of three-phase shunt active
power filter with anti-windup PI controller
optimized by particle swarm optimization,” Comput.
Electr. Eng., vol. 96, no. PA, p. 107471, 2021, doi:
10.1016/j.compeleceng.2021.107471.
[20] B. Sahoo, S. Keshari, and P. Kumar, “Repetitive
control and cascaded multilevel inverter with
integrated hybrid active filter capability for wind
energy conversion system,” Eng. Sci. Technol. an
Int. J., vol. 22, no. 3, pp. 811–826, 2019, doi:
10.1016/j.jestch.2019.01.001.
[21] A. Seguel, “Diseño e Implementación de un Filtro
Híbrido para la Atenuación de Sub e Inter
Armónicas en Cicloconversores,” Tesis, p. 108,
2018.
[22] A. Zielińska, M. Skowron, and A. Bień, “Modelling
of photovoltaic cells in variable conditions of
temperature and intensity of solar insolation as a
method of mapping the operation of the installation
in real conditions,” in 2018 International
Interdisciplinary PhD Workshop, IIPhDW 2018,
Jun. 2018, pp. 200–204, doi:
10.1109/IIPHDW.2018.8388357.
[23] R. Godina, E. M. G. Rodrigues, E. Pouresmaeil, and
J. P. S. Catalão, “Simulation study of a photovoltaic
cell with increasing levels of model complexity,”
Jul. 2017, doi: 10.1109/EEEIC.2017.7977768.
[24] M. Montúfar, W. Pavón, M. Jaramillo, and S.
Simani, “Solar Cell Mathematical Modelling
Comparing Single and Double Diode Under Three
Parameter Approach,” in 2021 IEEE PES Innovative
Smart Grid Technologies Conference - Latin
America (ISGT Latin America), 2021, pp. 1–5, doi:
10.1109/ISGTLatinAmerica52371.2021.9543074.
[25] M. Marcu, F. G. Popescu, T. Niculescu, L. Pana, and
A. D. Handra, “Simulation of power active filter
using instantaneous reactive power theory,” in
Proceedings of International Conference on
Harmonics and Quality of Power, ICHQP, 2014, pp.
581–585, doi: 10.1109/ICHQP.2014.6842783.
[26] H. Yuan and X. Jiang, “A simple active damping
method for Active Power Filters,” in Conference
Proceedings - IEEE Applied Power Electronics
Conference and Exposition - APEC, May 2016, vol.
2016-May, pp. 907–912, doi:
10.1109/APEC.2016.7467979.
[27] B. Kedra, “Comparison of an active and hybrid
power filter devices,” in Proceedings of International
Conference on Harmonics and Quality of Power,
ICHQP, 2014, pp. 556–560, doi:
10.1109/ICHQP.2014.6842771.
[28] B. Vaagensmith, J. Ulrich, J. Welch, T. McJunkin,
and C. Rieger, “IEEE 13 Bus Benchmark Model for
Real-Time Cyber-Physical Control and Power
Systems Studies,” in 2019 Resilience Week (RWS),
2019, vol. 1, pp. 112–120, doi:
10.1109/RWS47064.2019.8971978.
[29] W. Pavon, E. Inga, S. Simani, and M. Nonato, “A
Review on Optimal Control for the Smart Grid
Electrical Substation Enhancing Transition
Stability,” Energies , vol. 14, no. 24. 2021, doi:
10.3390/en14248451.
William Llumitaxi.- (Y’1989-
M’10). Realizó sus estudios de
nivel secundario en el Colegio
Instituto Tecnológico Superior
Guaranda. Egresado de Ingeniería
Eléctrica de la Universidad
Politécnica Salesiana. Su trabajo
está basado en el diseño e
implementación de un acondicionador llamado filtro
activo híbrido para mejorar la calidad de la energía, este
permite corregir armónicos generados por la integración
de generación fotovoltaica en el sistema de distribución
eléctrico.