Edición No. 19, Issue II, Enero 2023
[4] X. R. Zhuang, M. Q. Gong, X. Zou, G. F. Chen,
and J. F. Wu, “Experimental investigation on flow
condensation heat transfer and pressure drop of
R170 in a horizontal tube,” Int. J. Refrig., vol. 66,
pp. 105–120, 2016, doi:
10.1016/j.ijrefrig.2016.02.010.
[5] K. Sariibrahimoglu, H. Kizil, M. F. Aksit, I.
Efeoglu, and H. Kerpicci, “Effect of R600a on
tribological behavior of sintered steel under starved
lubrication,” Tribol. Int., vol. 43, no. 5–6, pp.
1054–1058, 2010, doi:
10.1016/j.triboint.2009.12.035.
[6] K. S. Kumar and K. Rajagopal, “Computational and
experimental investigation of low ODP and low
GWP HCFC-123 and HC-290 refrigerant mixture
alternate to CFC-12,” Energy Convers. Manag.,
vol. 48, no. 12, pp. 3053–3062, 2007, doi:
10.1016/j.enconman.2007.05.021.
[7] H. Kruse, “The state of the art of the hydrocarbon
technology in household refrigeration,” in Proc. of
the int. conferences on ozone protection
technologies, Washington, DC, 1996, pp. 179--188.
[8] C. L. Ong and J. R. Thome, “Macro-to-
microchannel transition in two-phase flow: Part 2 -
Flow boiling heat transfer and critical heat flux,”
Exp. Therm. Fluid Sci., vol. 35, no. 6, pp. 873–886,
2011, doi: 10.1016/j.expthermflusci.2010.12.003.
[9] M. M. Sarafraz and F. Hormozi, “Scale formation
and subcooled flow boiling heat transfer of CuO-
water nanofluid inside the vertical annulus,” Exp.
Therm. Fluid Sci., vol. 52, pp. 205–214, 2014, doi:
10.1016/j.expthermflusci.2013.09.012.
[10] J. B. Copetti, M. H. MacAgnan, and F. Zinani,
“Experimental study on R-600a boiling in 2.6 mm
tube,” Int. J. Refrig., vol. 36, no. 2, pp. 325–334,
2013, doi: 10.1016/j.ijrefrig.2012.09.007.
[11] M. Magnini and J. R. Thome, “A CFD study of the
parameters influencing heat transfer in
microchannel slug flow boiling,” Int. J. Therm.
Sci., vol. 110, pp. 119–136, 2016, doi:
10.1016/j.ijthermalsci.2016.06.032.
[12] Q. Liu, W. Wang, and B. Palm, “A numerical study
of the transition from slug to annular flow in micro-
channel convective boiling,” Appl. Therm. Eng.,
vol. 112, pp. 73–81, 2017, doi:
10.1016/j.applthermaleng.2016.10.020.
[13] A. Ferrari, M. Magnini, and J. R. Thome,
“Numerical analysis of slug flow boiling in square
microchannels,” Int. J. Heat Mass Transf., vol. 123,
pp. 928–944, 2018, doi:
10.1016/j.ijheatmasstransfer.2018.03.012.
[14] M. Wörner, “Numerical modeling of multiphase
flows in microfluidics and micro process
engineering: A review of methods and
applications,” Microfluid. Nanofluidics, vol. 12, no.
6, pp. 841–886, 2012, doi: 10.1007/s10404-012-
0940-8.
[15] S. Szczukiewicz, M. Magnini, and J. R. Thome,
“Proposed models, ongoing experiments, and latest
numerical simulations of microchannel two-phase
flow boiling,” Int. J. Multiph. Flow, vol. 59, pp.
84–101, 2014, doi:
10.1016/j.ijmultiphaseflow.2013.10.014.
[16] H. Wang, Z. Pan, and S. V. Garimella, “Numerical
investigation of heat and mass transfer from an
evaporating meniscus in a heated open groove,” Int.
J. Heat Mass Transf., vol. 54, no. 13–14, pp. 3015–
3023, 2011, doi:
10.1016/j.ijheatmasstransfer.2011.02.047.
[17] Z. Pan and H. Wang, “Bénard-Marangoni
instability on evaporating menisci in capillary
channels,” Int. J. Heat Mass Transf., vol. 63, pp.
239–248, 2013, doi:
10.1016/j.ijheatmasstransfer.2013.03.082.
[18] M. H. Yuan, Y. H. Yang, T. S. Li, and Z. H. Hu,
“Numerical simulation of film boiling on a sphere
with a volume of fluid interface tracking method,”
Int. J. Heat Mass Transf., vol. 51, no. 7–8, pp.
1646–1657, 2008, doi:
10.1016/j.ijheatmasstransfer.2007.07.037.
[19] R. Zhuan and W. Wang, “Flow pattern of boiling in
micro-channel by numerical simulation,” Int. J.
Heat Mass Transf., vol. 55, no. 5–6, pp. 1741–
1753, 2012, doi:
10.1016/j.ijheatmasstransfer.2011.11.029.
[20] EES, “EES: Engineering Equation Solver.” 2020,
[Online]. Available: http://fchartsoftware.com/.
[21] I. Honeywell International, “Genetron Properties.”
2020.
[22] L. F. Toapanta Ramos, G. A. Bohórquez Peñafiel,
L. E. Caiza Vivas, and W. Quitiaquez Sarzosa,
“Análisis numérico de los perfiles de velocidad de
un flujo de agua a través de una tubería con
reducción gradual,” Enfoque UTE, vol. 9, no. 3, pp.
80–92, 2018, doi: 10.29019/enfoqueute.v9n3.290.
[23] N. Kurul and M. Z. Podowski, Multidimensional
effects in forced convection subcooled boiling.
International Heat Transfer Conference Digital
Library, 1990.