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Abstract 

 

The addition of chemicals in drinking water 

treatment is usually a manual procedure 

performed by highly trained and experienced 

persons. To solve this problem, this study is based 

on the analysis of data collected from a raw water 

source located in Ecuador. Then, using the 

information on the physical-chemical parameters 

of the raw water such as pH, turbidity and color, 

the definition of the doses of Poly Aluminum 

Chloride (PAC), and the input and output 

variables of the dosage process are identified. 

Consequently, the implementation of an 

intelligent control system based on Artificial 

Neural Networks (ANN) is proposed in order to 

reduce the dependence on experienced people. 

These experiments start with data collection and 

analysis in order to establish the variables 

involved in the process. The proposed neural 

model has three hidden layers, and it uses adaptive 

gradient algorithms. An analysis of the results was 

performed using Mean Absolute Percentage Error 

(MAPE) and Root Mean Square Error (RMSE). 

The PAC predictive model in the training phase 

gives a MAPE value of 0.0425 for the not adjusted 

values and 0.0262 for the adjusted numerical 

values. However, in the test phase the neural 

model achieves a MAPE of 0.057 for the not 

adjusted PAC values and 0.041 for the adjusted 

values. This alternative provides an efficient 

solution to solve dosing problems in drinking 

water treatment plants (DWTP), with reliable 

results according to RMSE and MAPE metrics. 

Resumen 

 

La adición de las sustancias químicas en el tratamiento 

del agua potable comúnmente es un procedimiento 

manual realizado por personal altamente capacitado y 

experimentado. Esta resulta una tarea crítica debido a 

que requiere cierto nivel de experiencia para una 

correcta dosificación. Como posible solución, este 

estudio se basa en el análisis de datos recolectados de 

una fuente de agua cruda ubicada en Ecuador. 

Utilizando la información de los parámetros 

fisicoquímicos del agua cruda, como el pH, turbidez y 

color, se identifican las dosis de Policloruro de 

Aluminio (PAC), y las variables de entrada y salida del 

proceso. En consecuencia, se propone la 

implementación de un sistema de control inteligente 

basado en Redes Neuronales Artificiales (RNA) con la 

finalidad de reducir la dependencia del personal 

experimentado. Para ello, se parte con la recolección y 

análisis de datos y así establecer las variables 

involucradas en el proceso. El modelo neuronal 

propuesto dispone de tres capas ocultas y utiliza 

algoritmos de gradiente adaptativo. El análisis de los 

resultados se realizó mediante el error porcentual 

absoluto medio (MAPE) y el error cuadrático medio 

(RMSE). El modelo predictivo de PAC en etapa de 

entrenamiento indica un valor MAPE de 0,0425 para 

los valores no ajustados y de 0,0262 para los valores 

numéricos ajustados. Sin embargo, en la etapa de 

prueba el modelo neuronal alcanza un MAPE de 0,057 

para los valores de PAC no ajustados y de 0,041 para 

los ajustados. Esta alternativa brinda una solución 

eficiente a la hora de resolver problemas de 

dosificación en las plantas de tratamiento de agua 

potable (PTAP), teniendo resultados confiables según 

las métricas RMSE y MAPE. 

Index terms−− Drinking water, Dosing, DWTP, 

Coagulant chemicals, Artificial neural networks, 

Control system. 

Palabras clave−− Agua potable, Dosificación, PTAP, 

Químicos coagulantes, Redes neuronales artificiales, 

Sistema de control. 
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1. INTRODUCTION 

Currently there are a lot of industrial processes that 

demand a specific control method for its proper 

operation. Within this group of procedures requiring 

modernization and implementation of control systems, 

are processes related to water treatment, specifically 

drinking water treatment, which involves transforming 

raw water from natural sources into drinking water within 

the parameters established under specific standards for 

human consumption. A conventional drinking water 

treatment process consists of sequential steps and the 

most important one, is coagulation since it ensures that 

the dosed quantities of coagulating chemicals are in 

accordance with the properties of the raw water such as 

color, turbidity, pH and alkalinity [1]. Obtaining the 

doses of these chemicals reacts to a non-linear response 

done by experts. It is performed by jar testing, which is 

not adaptive to changes in real time and needs a 

considerable amount of time for its execution [1]. This is 

an issue since there is an immediate and constant 

dependence on qualified and experienced operators. 

To ensure good quality of treated water, operators 

must adjust the amounts of coagulant chemicals at certain 

time intervals or climatic conditions where the water has 

parameters outside the usual range. Excessive amounts of 

coagulant chemicals correspond to increased treatment 

costs and public health problems. An under dosage 

corresponds to a failure in the flocculation of the water 

and increases the frequency of maintenance of DWTP 

increasing the cost of production. Moreover, an 

implementation of algorithms based on artificial 

intelligence and machine learning, which have been 

investigated and implemented in treatment plants around 

the world, is proposed. 

For instance, [2] uses the potential provided by 

artificial neural networks, supporting vector machines, 

and gene expression programming to approximate the 

model of trihalomethane formation generated by chlorine 

water disinfection processes. They obtained as a result 

three models that capture the complex nonlinear behavior 

of the collected data. They also indicated excellent 

predictive and generalization capability.  Furthermore, it 

demonstrated that these types of models, which 

commonly need a large amount of data, apply to a smaller 

amount of data. In another research, [3] artificial neural 

networks (ANN) are utilized to model the PAC dose. 

This method responds well when obtaining the 

appropriate dose in real-time when a storm brings high 

turbidity in raw water. In fact, they defined the input 

variables using Pearson’s correlation and validated their 

model using the mean square error obtained. 

In addition, [4] developed a model where the type of 

coagulant to be used is set by decision trees and the dose 

was estimated by ANN, allowing to calculate from the 

raw water parameters (pH, turbidity, and temperature), 

the amount and type of coagulant to be used (PAC, PASS 

and PSO-M). Moreover, [5] developed a model to predict 

turbidity and color of treated water at the outlet of the 

Rossdale WTP located in Edmonton, Alberta in Canada. 

In 2009, [6] determined that the coagulant dose cannot be 

settled under traditional mathematical models, because it 

depends on several factors. Stating that the prediction of 

coagulant by neural network provides high accuracy and 

faster convergence speed and can be used to predict in 

real time online. 

These types of neural models are seen as standard 

estimators of nonlinear relationships and their predictive 

and generalization capabilities let them have successful 

applications in different fields of knowledge [7]. 

On account of the above-mentioned research, the 

objective of this study is to build a neural model that 

adequately adapts to the relationship between raw water 

quality and the doses of chemicals needed for treatment. 

Initially, the data obtained involves a dosing history over 

a period of 14 months. The correlation between raw water 

quality and coagulant dosage was found. We will have to 

find a middle ground in the learning of our model in 

which we are not underfitting and not overfitting.  For 

this problem, the input data set for training should be 

subdivided into two: one for training and one for the test 

that the model will not know beforehand. This division is 

usually made of 80% for training and 20%. The Test set 

should have diverse samples and enough samples to be 

able to check the results once the model has been trained. 

We proceeded with the training and validation process of 

the neural model by using the adaptive gradient algorithm 

and the analysis of the results using MAPE and RMSE. 

The results for the training set were an RMSE value 

below 2.82 and for the MAPE, a value of less than 0.045. 

On the other hand, for the test, set a RMSE value below 

3.3 and 0.06 for the MAPE. It has been observed that the 

RMSE metric does not predict whether the estimation 

model is ideal or not. On the contrary, MAPE offers a 

better way to determine the accuracy of the model. The 

higher model accuracy is achieved when the value of 

MAPE is lower. Proving that the system had the ability 

to get information from dosing background and be able 

to estimate PAC doses for different raw water qualities. 

The following paper is organized as follows: an 

overview of the water treatment process, determination 

of the variables, data analysis, construction and training 

of the neural model, analysis of results and conclusions. 

2. METHODOLOGY 

2.1. Determination of Process Variables 

The conventional drinking water treatment process 

consists of 6 stages where the predominant process is 

dosing. This defines the success of the following stages. 

The process diagram of the drinking water treatment 

process is shown in Fig. 1. 
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Figure 1: Conventional drinking water treatment process 

The measurement of organoleptic and physical-

chemical parameters is performed on the raw water. 

These measured values help in acquiring the amount of 

chemicals to be dosed for water coagulation. The 

amounts of chemicals can be tested by a jar test in the 

DWTP laboratory before dosing. Based upon the dosing 

process carried out at the DWTP, from the studies 

previously mentioned and the experience, the minimum 

and necessary amount of input variables involved in the 

process was defined. The input variables of the control 

system are pH, turbidity, and color of the raw water. 

These were selected through expert knowledge and were 

determined to be the minimum necessary to estimate the 

doses of chemicals considering the limited 

instrumentation existing in the DWTP. These variables 

can be quantified by means of sensors located at the inlet 

of the DWTP. The output variables are directly related to 

the amount of chemicals to be dosed in parts per million 

(ppm). Therefore, the control system in a generic way 

was shaped by the mentioned process variables and is 

structured in Fig. 2.  

 

 
Figure 2: Control diagram for dosage 

2.2. Data Collection and Analysis 

The data obtained correspond to a water source that 

supplies one of the DWTP in Ecuador. This database 

contains the input parameters of the control system, 

which are the quantifiable characteristics of the water that 

took one year and two months of data collection. It started 

on October 1, 2017 and ended on December 31, 2018 

with a total of 438 data points available. The raw water 

parameters of the raw water source are shown in Fig. 3 - 

Fig. 5.   

 

Figure 3: Raw water pH 

 

Figure 4: Raw water turbidity. 

 

Figure 5: Raw water color 

Fig. 6 shows the PAC dosages. The graph shows the 

dosage in normalized values. A linear scale between 0 

and 1 was used to normalize the data using the following 

equation. 

𝑫𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 =
𝑫−𝑴𝒊𝒏

𝑴𝒂𝒙−𝑴𝒊𝒏
                (1) 

Where D is the PAC dose, Max is the maximum PAC 

dose value, and Min is the minimum PAC dose value. 
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Figure 6: PAC Dosage 

Pearson's correlation was used to determine the 

statistical relationship between the process variables. 

This is shown in Table 1. 

Table 1: Pearson's Correlation Between each Input and Output 

Pearson's correlation coefficient (r) 

 PAC Color Turbidity pH 

PAC 1 -0.63012 -0.70006 -0.32401 

Color  1 0.89924 0.49197 

Turbidit

y 

  1 0.46451 

pH    1 

The relationship between the PAC output and the 

Color, Turbidity and pH inputs is a negative association, 

i.e. as the raw water parameters increase their value for 

the amount of PAC doses decreases. It can also be said 

that this correlation between PAC doses and the 

parameters: Color and Turbidity is higher compared to 

the association between PAC and water pH. The color 

and turbidity of the water have a relatively high positive 

correlation, that means that as the color of the raw water 

increases its value so does the turbidity. Additionally, 

color and turbidity are positively related to pH but their 

relationship value is low. Finally, the coefficient of 

determination between the variables was obtained, which 

is illustrated in the following table: 

Table 2: Determination Between each Input and Output 

Pearson's correlation coefficient (r) 

 PAC Color Turbidity pH 

PAC 1 0.39706 0.49009 0.10498 

Color  1 0.80864 0.24204 

Turbidity   1 0.21577 

pH    1 

It is proved that the indicator of determination 

between the PAC, the variable to be predicted, and the 

Color, Turbidity and pH inputs is found to be less than 

50% in each case. As a result, the model is a poor fit to 

its data. Consequently, the model belongs to a non-linear 

system and demands an intelligent control system that is 

suitable for the data. 

2.3. Structure of the Neural Model 

An Artificial Neural Network (ANN) represents a 

computer model based on the application of theoretical 

neurophysiology that replicates the way in which the 

human nervous system communicates and propagates. In 

[8] McCulloch & Pitts developed the first computer 

model that captures this work. 

A Multilayer Perceptron (MLP) consists of a network 

architecture composed of one or several hidden layers, an 

interconnected system that examines information in a 

parallel but non-linear way, giving the ability to solve 

non-linear problems. The hidden layer makes a 

connection between each input and each output of the 

neural network, forming a fully connected or "dense" 

model. The information that reaches the input layer 

generates an activation pattern that in turn is an input 

signal applied to the neurons of the hidden layer [9]. If 

there is more than one hidden layer, the output signal of 

the first hidden layer is the input of the next hidden layer 

and so on until the output layer is accomplished. The 

matrix-expressed implementation of this algorithm called 

forward propagation is shown as follows: 

                 ∑ 𝒁𝒍 = 𝑾𝑻[𝒍]𝑨[𝒍−𝟏] + 𝑩[𝒍]𝒏
𝒍=𝟏                      (2) 

𝑨[𝒍] = 𝒇(𝒁) 

Being 𝒍 the number of layers of the MLP, 𝒇 is the 

transfer activation function, 𝑾[𝒍] is the current synaptic 

weights, 𝑨[𝒍−𝟏] represents the output of the previous 

layer, 𝑩 is the bias vector and 𝑨[𝒍] represents the output 

of the current layer. 

An MLP is regularly trained with stochastic gradient 

descent methods [10], a technique in which the ANN 

parameters are updated at each iteration and the error is 

propagated backwards, updating the synaptic weights 

and decreasing the error in prediction. 

In the present case study, the inputs of the ANN are 

the physical-chemical characteristics of the raw water: 

Turbidity, Color and pH. The output is the amount in 

parts per million of PAC. 

Recordings of data corresponding to 438 dosages of 

the chemical agent PAC, with their respective input 

parameters, were used.  The outcomes suggest that 80% 

of the data should be used for the training set, and the 

remaining 20% for the test set. Through the training 

process of the neural network, the best hyperparameters 

suit the model and allow the best accuracy in the 

prediction of the output were determined. Which are 

shown in the following table: 
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Table 3: Hyperparameters of the neural model 

Dense Sequential Deep ANN 

Layer 
Number of 

neurons 

Number of 

parameters 

Activation 

function 

Input 3 - - 

Hidden 1 50 

20 

200 Sigmoid 

Hidden 2 200 10200 Sigmoid 

Hidden 3 50 10050 Sigmoid 

Output 1 51 Linear 

Total parameters: 20501 
Trainable parameters: 20501 

Untrainable parameters: 0 

Learning rate: 0.1 
Number of training epochs: 3000 

Optimizer: Adaptative Gradient Algorithm (Adagrad) 

Root Mean Square Error (RMSE): 2.54 

The design of the deep ANN for PAC dosing is 

illustrated in the Fig. 7. 

 

Figure 7: ANN Architecture 

3. RESULTS AND DISCUSSIONS 

Once the artificial neural model has been trained, a 

validation was performed using real vs. predicted data. 

For this, the data from the training set was initially 

employed, later the data for the test set was used, which 

represented new data for the neural model. The trained 

model has the ability to predict the PAC dose with the 

test data and with new data in real time. 

It should be noted that the neural model predicts 

decimal values due to the activation functions used in its 

neurons, which may be found in the database. The PAC 

dosage values are integer values (ppm). Hence, the next 

step has been used to approximate each datum to its 

immediate superior in order to get the predicted doses 

correctly. This does not affect the output results because 

the dosages are made through doses with specific steps 

(50, 60, 70). Therefore this approach helps us to stay in 

the practical range of dosages. However, for their 

representation, both results were considered as an 

illustration. The performance and precision of the neural 

model with respect to the real data of the dosages were 

through the Mean Absolute Percentage Error (MAPE) 

and the Root Mean Square Error (RMSE), metrics 

expressed by the following equations:  

𝑹𝑴𝑺𝑬 =  √
∑(𝑿𝒊 − 𝒀𝒊)

𝟐

𝑵
 

𝑴𝑨𝑷𝑬 =  
𝟏𝟎𝟎%

𝑵
∑ |

𝑿𝒊 − 𝒀𝒊

𝑿𝒊

|

𝑵

𝒊=𝟏

 

Where 𝑿𝒊 is the measured value, 𝒀𝒊 is the predicted 

value, and 𝑵 represents the number of samples. The 

results obtained in the training and testing phase are 

shown in the Table 4. 

Table 4: Accuracy of the neuronal model 

 RMSE MAPE 

Training set 

(Not adjusted values) 
2.549 0.0425 

Training set 

(Adjusted values) 
2.816 0.0262 

Test set 

(Not adjusted values) 
3.141 0.057 

Test set 

(Adjusted values) 
3.254 0.0401 

 

Fig. 8 and 9 show the performance of the Deep ANN 

through the comparative graphs of the real data vs. the 

data predicted by the neural network in the training set. 

In the same way, the performance of the Deep ANN with 

the test set is shown through the Fig. 10 and 11. 

 

 

Figure 8: Training set (Not adjusted values) 

 

97



Edición No. 20, Issue I, Julio 2023 

 

 

Figure 9: Training set (Adjusted values) 

 

Figure 10: Test set (Not adjusted values) 

 

 

Figure 11: Test set (Adjusted values) 

The main problem with the RMSE metric is that it 

does not predict whether the estimation model is good or 

not. MAPE offers a better way to determine model 

accuracy, while the value of MAPE is lower, then the 

model is more accurate. 

As can be seen in Table 4, the PAC predictive model 

in the training phase achieves a MAPE value of 0.0425 

for PAC values and 0.0262 for adjusted values. This 

demonstrates that the predictions delivered by the neural 

model are quite accurate. However, in the testing phase, 

the neural model reaches a MAPE of 0.057 for PAC 

values and 0.041 for adjusted, which still displays the 

reliability and accuracy of the system. 

4. CONCLUSIONS 

In conclusion, this deep ANN gives an efficient 

solution to solve dosing problems that may occur in any 

DWTP. Within the DWTP, pH Regulator, PAC and 

flocculant are dosed, due to the focus of this project, a 

model with 3 inputs (pH, Turbidity, Color) - 1 output 

(PAC) was studied. Only the PAC will be used as output 

because it represents the minimum model that can be 

developed. To verify that the dosage is correct, pH, 

turbidity and color are measured at the outlet of the WTP 

(treated water) and check that the parameters are within 

the norm. The system automatically defines the 

appropriate dosage regardless of the parameters that are 

presented without the need to call or have the immediate 

help of a specialist. The various implementations of these 

systems have been studied within the state of the art in 

DWTPs in different parts of the world, and it has been 

possible to verify the success of this alternative in 

comparison to methods that do not use artificial 

intelligence. 

This system can have a good reception in companies 

dedicated to the treatment of drinking water leading to 

answer the need of a possible booming market, which 

coincides with the implementation of automatic and 

intelligent systems in our country. 

According to the metrics used, in the evaluation of the 

unadjusted training set, an RMSE of 2.549 and MAPE of 

0.0425 were obtained. For the adjusted training data, an 

RMSE of 2.816 and a MAPE of 0.0262 were also 

acquired. As demonstrated in both cases of the training 

test, the MAPE is below 0.045, which reveals that the 

model is quite accurate.  

Furthermore, for the unadjusted test set an RMSE 

value of 3.141 and a MAPE of 0.057 was obtained. For 

the adjusted data set an RMSE of 3.254 and MAPE of 

0.0401 were obtained. As can be seen in the testing phase, 

for both cases, MAPE of less than 0.06 is examined, 

which still shows the efficiency of the ANN. 

According to the aforementioned values it is 

concluded that the Deep ANN model is correctly adapted 

to the nonlinear behavior describing the chemical dosing 

processes from the parameters of the raw water discharge 

and has the ability to gain knowledge from a dosing 

history. It is mentioned that in the proposed treatment 

process, only the PAC doses are predicted, the doses of 

pH regulator and flocculant are calculated in the field 

with the knowledge of the expert without affecting the 

operation of the DWTP. 

A comparison of the different neural models for the 

prediction of coagulant chemicals can be proposed as a 
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future study. In addition, another system can be 

implemented where the outputs are all the coagulating 

chemicals. In this case only one output (PAC) is used as 

a starting point for future projects. 
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