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Abstract 

 

Real-time voltage stability assessment, via 

conventional methods, is a difficult task due to the 

required large volume of information, high 

execution times and computational cost. Based on 

this background, this technical work proposes an 

alternative method for voltage stability margin 

estimation through the application of artificial 

intelligence and data mining algorithms. For this 

purpose, 10 000 operate scenarios were generated 

through Monte Carlo simulations, considering the 

load variability and the n-1 security criterion. 

Afterwards, the voltage stability margin of all 

scenarios were determined using power-voltage (PV) 

curves in order to obtain a database. This 

information allowed structuring a data matrix for 

training and evaluating an artificial neural network 

and a support vector machine, capable of predicting 

the voltage stability margin, even in real time. The 

performance of the prediction tools was evaluated 

through the mean square error and the coefficient of 

determination. The proposed methodology was 

applied to the IEEE 14 bus test system, showing so 

promising results for both the neural network and 

the vector machine, where the coefficients of 

determination were 0.9153 and 0.8317, respectively. 

Resumen 

 

La evaluación de la estabilidad de voltaje en tiempo 

real, mediante métodos convencionales, resulta en 

una tarea difícil debido al gran volumen de 

información, los elevados tiempos de ejecución y el 

esfuerzo computacional requerido. Con estos 

antecedentes, el presente trabajo técnico propone un 

método alternativo que permite la estimación del 

margen de estabilidad de voltaje a través de la 

aplicación de algoritmos de inteligencia artificial y 

minería de datos. Para ello, se generaron 10 000 

escenarios operativos mediante simulaciones de 

Monte Carlo, considerando la variabilidad de la 

carga y el criterio de seguridad n-1. Posteriormente, 

se determinaron los márgenes de estabilidad de 

voltaje de todos los escenarios mediante el uso de las 

curvas voltaje-potencia (PV, por sus siglas en inglés), 

con la finalidad de obtener una base de datos. Esta 

información permitió estructurar una matriz de 

datos para entrenar y evaluar la red neuronal 

artificial y la máquina vectorial de soporte, capaz de 

predecir el margen de estabilidad de voltaje, incluso 

en tiempo real. El desempeño de las herramientas de 

predicción se evaluó a través del error cuadrático 

medio y del coeficiente de determinación. La 

metodología propuesta se aplicó al sistema de prueba 

IEEE 14 bus, mostrando resultados prometedores 

tanto para la red neuronal como para la máquina 

vectorial, donde los coeficientes de determinación 

fueron 0.9153 y 0.8317, respectivamente. 

Index terms−− Voltage stability assessment, Monte 

Carlo method, voltage stability margin estimation, 

artificial intelligence algorithms. 

Palabras clave−− Evaluación de la estabilidad de 

voltaje, método de Monte Carlo, estimación del 

margen de estabilidad de voltaje, algoritmos de 

inteligencia artificial. 
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1. INTRODUCTION 

The increase of electricity load as well as the 

existence of new economic and environmental 

constraints on generation dispatch and expansion of 

transmission systems have caused the Electrical Power 

System (EPS) to operate closer to its operating limits. In 

these new operating conditions, the static and dynamic 

security can be affected by voltage stability problems [1]. 

According to [2], voltage instability causes a progressive 

and uncontrolled decrease of bus voltages after a 

disturbance, a sudden increase in electrical load, a change 

in system operating conditions or a combination of all of 

them. Cepeda et al. established most of these events 

occur in stressed EPS, where generators fail to maintain 

normal voltage profiles at the busbars and transmission 

lines are congested [3]. 

Currently, in the technical literature, several 

approaches for voltage stability assessment have been 

proposed: active power-voltage (PV) and reactive power-

voltage (Q-V) curves, modal analysis, sensitivity studies, 

application of voltage stability indices and continuous 

power flow (CPF), all of them for static analysis, as 

shown by Patidar and Sharma [4]. However, from a real-

time perspective, such approaches require a large amount 

of time and computational effort for the execution of 

these methodologies. On the other hand, artificial 

intelligence-based algorithms are the most important 

tools to perform real-time static or dynamic security 

monitoring and assessment of EPS by predicting voltage, 

frequency and angle stability margins. 

As demonstrated in [5], today, machine learning 

(ML) based techniques such as artificial neural networks 

(ANNs), decision trees (DTs), fuzzy logic (FL), adaptive 

neuro-fuzzy inference system (ANFIS) and support 

vector machines (SVMs) have become attractive tools for 

solving nonlinear problems with desired speed and 

accuracy. In particular, deep learning is used in [6], for 

short-term voltage stability assessment of power systems 

to learn the dependencies from post-disturbance system 

dynamic trajectories. In this connection, it is important to 

highlight that most of the current proposed 

methodologies, oriented to use artificial intelligence-

based algorithms, have been applied to test power 

systems, but their implementation to actual power 

systems, together with proper contingencies 

consideration continues to be scarce. 

 Based on these facts, this paper presents a novel 

methodology based on artificial neural networks, 

specifically multi-layer perceptron (MLP), and support 

vector regression (SVR), to estimate the voltage stability 

margin (VSM) using a validated database generated by 

Monte Carlo simulations. The proposal is applied to the 

IEEE 14 bus test power system. 

The rest of the paper is organized as follows. A 

theoretical review of voltage stability assessment 

methodologies is presented in Section 2. Section 3 

describes the proposed methodology that considers the 

database generation, data processing and considerations 

for machine learning training and testing. Moreover, 

Section 4 shows the application example and obtained 

results. Finally, the main conclusions are stated in 

Section 5. 

2. THEORETICAL REVIEW 

2.1. Voltage Stability definition 

According to IEEE (Institute of Electrical and 

Electronics Engineers) / CIGRE (International Council 

on Large Electric Systems), voltage stability refers to the 

ability of a power system to maintain steady voltages at 

all buses in the system after being subject to a disturbance 

[7]. The phenomenon that occurs when the electric 

system is unable to meet demand with steady voltages 

under stress conditions is known as voltage instability. 

According to [8],  the factors contributing to voltage 

stability are the generators’ reactive power limits, outage 

of any equipment (transmission lines, generators or 

transformers), load characteristics, characteristics of 

reactive compensation devices and the action of voltage 

control devices. 

2.2. PV curves 

PV curves are essential to analyze the voltage 

stability of an EPS. They allow finding the critical 

voltage instability point by increasing the power load 

until the power flow does not converge (stability limit), 

as shown by Amroune [9]. As demonstrated in [10], a 

methodology is proposed to determine the voltage profile 

power transfer limits of the monitored transmission 

corridors using the Thevenin Equivalent method and the 

determination of the PV curve in real-time. This allows 

voltage stability assessment in real time and constitutes 

an important basis for early-warning indicators. 

However, this methodology assumes the availability of 

phasor measurement units (PMU) at both sending and 

receiving ends of the transmission corridor, which is not 

always possible, Reddy et al. [11] and Lee and Han [12]. 

One of the most frequent terms related to voltage 

instability is the voltage stability margin (VSM), which 

corresponds to a measure of the distance from the initial 

operating point to the critical point, as illustrated in Fig.1. 

In the figure, voltages decay when there is an increase in 

the transmitted active power. The voltage stability limit 

is at the critical point (B), while the initial operating point 

(A) corresponds to a less loaded state. The curve above 

the critical point is known as the stable part, whereas the 

rest of the curve is known as the unstable part. In 

addition, if there is a change in the power factors of the 

loads, the curves also change because a new operating 

point of the system appears and thus a new voltage 

stability limit, as shown by Patiño and Limas [13].  
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According to Fig. 1, the VSM can be calculated using 

the initial operating point and critical point as: 

Where: 

• 𝑃𝑚𝑎𝑥: Final power of the loads in [MW]. 

• 𝑃0: Base power of loads in [MW]. 

𝑴𝑬 =
𝑷𝒎𝒂𝒙 − 𝑷𝟎

𝑷𝟎
 

(1) 

Therefore, a high VSM value denotes a more stable 

EPS, since it can transfer more power until the stability 

limit is reached. On the other hand, according to [14], a 

low index value indicates the power transfer is limited 

because the system is more stressed, and therefore, the 

system is more prompt to voltage instability. A secure 

operation region definition, through the application of PV 

curves, is useful to operators when taking preventive or 

corrective measures in real time operation. In this sense, 

this range of limits is subjective because it is related to 

operating regulations, technical reports, operating 

experience, among others. 

 
Figure 1: PV curve example [13] 

To give an example, the alert and alarm limits 

associated with voltage stability are determined by the 

approach adopted in [15], which shows how 

measurements from distributed PMUs can be combined 

with relevant transmission lines’ parameters, and be 

handled to detect forthcoming voltage stability problems 

in power systems at early stage. 

In this paper, iterative power flow computations, 

based on the PowerFactory PV curve analysis module, is 

performed to create a VSM database [16].  

2.3. Monte Carlo method as scenario generation tool 

The Monte Carlo method allows, through successive 

deterministic power flows, to solve probabilistic power 

flows. The application of the Monte Carlo method for the 

analysis of probabilistic power flows allows considering 

the stochasticity of the system behavior with the purpose 

of performing a study closer to reality, as demonstrated 

in [17]. 

In stability studies, the Monte Carlo method has 

allowed the generation of multiple probable scenarios to 

determine system security indexes. In [18], a 

methodology is proposed to assess the load uncertainty 

impact on the transient stability of EPS based on 

probabilistic analysis of the Critical Clearing Time. 

Monte Carlo method has also been used to determine 

different operating conditions to establish voltage 

stability indexes of transmission lines. 

In this paper, Monte Carlo simulation is applied to 

perform iterative simulations oriented to determine the 

VSM of several operating scenarios, including the n-1 

security criterion. For this aim, the scripting capability of 

PowerFactory is used to iteratively control the PV curve 

analysis tool from Python. 

2.4. Voltage stability assessment using machine 

learning techniques 

There are different approaches for voltage stability 

analysis such as PV and QV curves, modal analysis, 

voltage stability indices (VSI) and continuation power 

flows (CPF). However, the application of these tools in 

real time to large SEPs is inconvenient due to the 

computational effort required by the high number of 

iterations related to the methods. That said, alternative 

approaches related to machine learning models (MLM) 

need to be explored to overcome this computational 

problem by interacting with technological tools, high-

level programming languages and data mining. The ML 

includes many techniques such as artificial neural 

networks (ANNs), decision trees (DTs), fuzzy logic (FL), 

adaptive neuro-fuzzy inference system (ANFIS), support 

vector machines (SVMs), among others. 

Machine learning is a branch of artificial intelligence 

that groups a set of methods for the creation of models 

that learn from data with the purpose of making a 

prediction or inference, as shown by Flach [19]. In this 

regard, an approach to estimate the VSM using artificial 

intelligence tools is presented in [20]. This methodology 

applies voltage stability indexes (VSI) calculated from 

synchrophasor measurements.  

On the other hand, a new approach to estimate the 

voltage stability margin through the combination 

between a kernel extreme learning machine (KELM) and 

a mean-variance mapping optimization (MVMO) 

algorithm is presented in [21], where the Monte Carlo 

method is employed to build the database for model 

training and validation. A comprehensive review of the 

application of machine learning tools such as artificial 

neural networks (ANN), decision tree (DT), support 

vector machines (SVM), for power system studies, 

especially in cyber-attack detection, PQ perturbation 

studies and dynamic security assessment studies is 

presented in [22]. 

Machine learning algorithms are mainly split into two 

groups: 
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2.4.1 Supervised algorithms 

These algorithms use labeled data sets to create a 

model that, using a vector of input and output features, 

predicts the label of the feature vector. Regression and 

classification are the two sub-groups associated with 

supervised learning. In this regard, artificial neural 

networks and support vector machines are used in this 

paper in their regression versions for predicting the VSM 

of the power system. 

2.4.2 Unsupervised algorithms 

These algorithms use an unlabeled dataset to find a 

final structure in the data, using only one set of inputs, as 

shown Echeverría [23]. The main purposes odd these 

algorithms are the data dimensionality reduction and 

clustering. In this connection, the principal component 

analysis (PCA) is used in this paper. 

3. METODOLOGY 

This technical work estimates the voltage stability 

margin of an EPS using machine learning tools and a 

database generated by Monte Carlo simulations. For this 

purpose, Python programming language and 

PowerFactory software are used. In the first stage, a 

validation of PowerFactory PV curves module using 

Matpower is performed. The stage two consists of 

database generation, data processing and machine 

learning algorithms application. Finally, VSM estimation 

and results analysis are performed in stage three. Fig. 2 

schematizes the proposed methodology. 

 
Figure 2: Methodology stages for estimating the voltage stability 

margin 

3.1. Stage 1: Matpower and PowerFactory 

The validation of PowerFactory PV curves module 

using Matpower allows to establish the theoretical-

technical support to implement the methodology of this 

study. This comparison is performed to verify how close 

to the nose of PV curves can be reached by the algorithm 

implemented in PowerFactory since it does not exactly 

accomplish CPF formal theory, whereas Matpower does. 

The standard IEEE 14 bus test system is used as a case 

study for this purpose.  

3.2. Stage 2: Software development 

The technical study aims to estimate the voltage 

stability margin from a validated database, considering 

machine learning algorithms. The following sections 

present the general procedure developed for database 

generation, data processing and considerations for the 

implemented algorithms. 

3.2.1 Database generation 

During the implementation of the simulation 

proposal, two processes are taken into account. The first 

process consists of generating the operational scenarios 

through communication between Python and 

PowerFactory. This process uses Monte Carlo method to 

generate multiple operating scenarios considering the 

variability of the load. For this purpose, optimal power 

flows (OPF) are first executed by PYPOWER. According 

to [24], PYPOWER is a power flow and OPF solver, 

which is a port of MATPOWER to the Python 

programming language.  

On the one hand, the Monte Carlo method allows 

considering the uncertainty of the demand, while the 

optimal power flows are used to obtain a proper dispatch 

of the generation units. It should be noted that the use of 

OPF in the face of load variations allows solving the 

problem associated with congestion of transmission lines 

near the slack generator when only power flows are used. 

 
Figure 3: Flowchart for the generation of operational states 

Fig. 3 shows the procedure adopted for the generation 

of operating states, where the input data are: the operating 

states in DIgSILENT PowerFactory, the generating costs 

of each unit and the stochasticity of each system load 

represented by probability density functions (PDF). 
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On the other hand, the second process allows the 

calculation of the VSM from the PV curves obtained 

from each operating scenario, generated by Monte Carlo 

simulations. These stability margins are arranged in a 

large matrix relating the main system variables. In 

addition, a set of transmission lines is chosen for each 

system under study, and in this way, through 

programming, the "n-1" criterion is assessed at the time 

of executing a power flow or the PV curves module. In 

this connection, all the information, including the 

stability margin, is stored in pre-contingency and post-

contingency data sets. The execution of this procedure 

developed in Python can be done directly in 

PowerFactory or through an external connection known 

as "engine mode", which allows the program to be 

controlled without the need for it to be open.  

3.2.2 Data proccesing 

The data processing is performed in the Python 

programming environment, due to its versatility when 

handling variables and the extensive documentation with 

respect to machine learning and data mining models. In 

this sense, the whole set of data obtained is structured and 

debugged to obtain the pre-contingency and post-

contingency matrices, considering the individuals or 

samples by the number of rows, while, the features by the 

number of columns. The number of rows is set to 10,000 

samples and the number of columns depends on the 

system or region of analysis (the features are the set of 

electrical variables that reflect the system steady-state of 

each operating scenario). After this, a reduction of the 

matrix dimensions is performed by means of PCA, 

considering that, in order to reduce the number of 

features. 

 
Figure 4: Flow chart for the implementation of the established 

models 

Once the files containing all the information from the 

base case, pre-contingency case and post-contingency 

case have been created, the data are processed so that they 

can be used by the machine learning algorithms and the 

models performance is evaluated, consequently. Fig. 4 

shows the program flow chart for data structuring and 

processing.  

3.2.3 Considerations 

Artificial neural networks and support vector 

machines available in the "Scikit-learn" library (machine 

learning and data analysis library developed in Python 

programming language) are trained and implemented. 

The hyperparameters inside each model can be modified 

according to the specific documentation. It should be 

emphasized that, during the modeling of the regressors, 

the input variables are found in the pre-contingency 

matrix and the output variables are found in the post-

contingency matrices, this approach will allow to 

properly perform the training and validation of the 

regressors. In addition, hyperparameters optimization of 

each model is performed using GridSearchCV, as shown 

Predregosa et al. [25]. 

3.3. Stage 3: Results 

Finally, the obtained results are analyzed by 

calculating the mean square error (MSE) and the 

coefficient of determination (R2) for the purpose of 

assessing the performance of each regressor. According 

to [26], MSE shows the average squared difference 

between the obtained and predicted values. A value close 

to zero of MSE indicates that the model fits the data set 

properly. R2, on the other hand, quantifies the linear 

relationship between the obtained value and the predicted 

value. A value close to “one” indicates that the model 

presents an appropriate fit. The entire process is 

performed using cross-validation.  

4. RESULTS – APPLICATION TO THE IEEE 14 

BUS SYSTEM 

The implemented algorithms are assessed through an 

optimization of the hyperparameters of each model, 

allowing to verify how well they fit the database. In 

addition, eight transmission lines are selected based on 

contingency analysis, to assess the “n-1” criterion. In this 

case, eight transmission lines were considered to 

calculate the VSM and to obtain the information of the 

pre and post-contingency system variables. For this 

reason, eight regressors were used. However, 

performance index results are only presented when 

transmission line “6-13” is out of service.  

Fig. 5 shows the reduction of the voltage stability 

margin of the critical bus of the system, before and after 

the occurrence of the contingency. This demonstrates the 

capability of the system to adjust to the active and 

reactive power requirements. 
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Figure 5: Example of PV curves before and after the L/T 6-13 

operation exit 

Table 1 shows the results for both the artificial neural 

network and the support vector machine. In this regard, 

for SVM, MSE gets worse when the optimization is 

applied since the error increases, while, R2 index, also 

gets worse due to the fact that it moves away from one. 

For these reasons it can be said that SVM does not 

correctly fit to the data set. Whereas, for ANN, MSE 

improves when the optimization is applied since the error 

is reduced, while, R2 index, also improves because it is 

closer to unity. As a conclusion, ANN approach fits 

better to the data set. 

 
Table 1: Resultados de los índices de rendimiento - L/T 6-13 

Models \ Indexes MSE R2 

ANN 0.07436 0.89741 

SVM 0.07637 0.90199 

ANN - GridSearchCV 0.06599 0.91531 

SVM - GridSearchCV 0.13115 0.83171 

The implemented models are adjusted depending on 

the established data set, i.e., the results obtained when the 

SVM is applied to the test system are not so efficient 

since it worsens the performance indexes. This can be 

justified by the outliers and the behavior of the system 

when calculating the stability margin by means of the PV 

curves. With this in mind, analyzing the case study, it is 

concluded that the best machine learning algorithm is the 

artificial neural network, since it presents a better 

prediction of the stability margin VSM post-contingency 

VSM pre-contingency before and after the optimizer. In 

addition, the proposed methodology was applied to the 

Ecuadorian National Interconnected System, 

demonstrating the robustness of the application and the 

improvement of performance indexes.  

5. CONCLUSIONS 

The machine learning model structuring requires to 

define the percentage of data to be used for training, 

validation and testing of the model. For the present case, 

80% was for training and 20% for model evaluation. 

However, the use of validation data set causes a 

considerable loss of samples which affects machine 

learning, in that sense, cross-validation method was 

implemented to take advantage of the largest amount of 

data for the final assessment of the model. 

The neural network and the support vector machine 

present adequate performance indexes to the voltage 

stability margin prediction. In particular, when the 

optimizer was used, R2 for ANN was 0.9153, and for 

SVM was 0.8317. Similar R2 results were obtained when 

the optimizer was not applied. However, when the 

optimizer was used, MSE for ANN was 0.0659, and for 

SVM was 0.1311. Therefore, the artificial neural network 

has the best prediction and therefore it is the regressor 

that best fits the data set of the tackled problem. 

The load variability was performed through a 

percentage change in the loads, however, it is 

recommended to use daily load curves (industrial, 

commercial and residential) to know the real load 

behavior in a 24-hour time interval.  
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