Edición No. 20, Issue I, Julio 2023
red de distribución de 34 y 123 nodos, logrando
resultados similares a los obtenidos por otros autores
mencionados en el estado del arte.
Se recomienda utilizar algoritmos de agrupamiento
para analizar y segmentar redes de distribución de
diferentes tamaños y características. Esto permitirá
obtener una visión mas completa y precisa de los grupos
presentes en la red.
Se recomienda realizar un análisis de los resultados
obtenidos de estos algoritmos. Esto nos ayudará a
comprender mejor el funcionamiento de la red y a tomar
decisiones más informadas para su óptimo rendimiento.
REFERENCIAS BIBLIOGRÁFICAS
[1] J. Castro, M. Saad, S. Lefebvre, D. Asber, and L.
Lenoir, “Coordinated Voltage Control in
Distribution Network with the Presence of DGs and
Variable Loads Using Pareto and Fuzzy Logic,”
Energies, vol. 9, no. 2, p. 107, Feb. 2016, doi:
10.3390/en9020107.
[2] Z. Ernesto Jaramillo, J. R. Castro, T. Castillo, and R.
Reategui, “Data Mining in Electrical Distribution
Networks: Optimal Location of Pilot Bus,” in 2021
IEEE Fifth Ecuador Technical Chapters Meeting
(ETCM), Oct. 2021, pp. 1–5, doi:
10.1109/ETCM53643.2021.9590646.
[3] E. Velasco-Ramírez, C. Ángeles-Camacho, and M.
García-Martínez, “Redes de transmisión inteligente.
Beneficios y riesgos,” Ing. Investig. y Tecnol., vol.
14, no. 1, pp. 81–88, Jan. 2013, doi: 10.1016/S1405-
7743(13)72227-3.
[4] Y. Chai, L. Guo, C. Wang, Z. Zhao, X. Du, and J.
Pan, “Network Partition and Voltage Coordination
Control for Distribution Networks With High
Penetration of Distributed PV Units,” IEEE Trans.
Power Syst., vol. 33, no. 3, pp. 3396–3407, May
2018, doi: 10.1109/TPWRS.2018.2813400.
[5] “Community-detection-based approach to
distribution network partition,” CSEE J. Power
Energy Syst., 2022, doi:
10.17775/CSEEJPES.2020.04150.
[6] B. Zhao, Z. Xu, C. Xu, C. Wang, and F. Lin,
“Network Partition-Based Zonal Voltage Control for
Distribution Networks With Distributed PV
Systems,” IEEE Trans. Smart Grid, vol. 9, no. 5, pp.
4087–4098, Sep. 2018, doi:
10.1109/TSG.2017.2648779.
[7] Y. Chen, M. G. Fadda, and A. Benigni,
“Decentralized Load Estimation for Distribution
Systems Using Artificial Neural Networks,” IEEE
Trans. Instrum. Meas., vol. 68, no. 5, pp. 1333–1342,
May 2019, doi: 10.1109/TIM.2018.2890052.
[8] M. Bahramipanah, M. Nick, R. Cherkaoui, and M.
Paolone, “Network clustering for voltage control in
active distribution network including energy storage
systems,” in 2015 IEEE Power & Energy Society
Innovative Smart Grid Technologies Conference
(ISGT), Feb. 2015, pp. 1–5, doi:
10.1109/ISGT.2015.7131916.
[9] C. Bonetti, J. Bianchotti, J. Vega, and G. Puccini,
“Optimal Segmentation of Electrical Distribution
Networks,” IEEE Lat. Am. Trans., vol. 19, no. 8, pp.
1375–1382, Aug. 2021, doi:
10.1109/TLA.2021.9475868.
[10] D. Sharma, K. Thulasiraman, D. Wu, and J. N. Jiang,
“A network science-based k-means++ clustering
method for power systems network equivalence,”
Comput. Soc. Networks, vol. 6, no. 1, p. 4, Dec.
2019, doi: 10.1186/s40649-019-0064-3.
[11] Z. M. Ali, A. M. Galal, S. Alkhalaf, and I. Khan, “An
Optimized Algorithm for Renewable Energy
Forecasting Based on Machine Learning,” Intell.
Autom. Soft Comput., vol. 35, no. 1, pp. 755–767,
2023, doi: 10.32604/iasc.2023.027568.
[12] L. R. and others Schneider, Kevin P and Mather, BA
and Pal, BC and Ten, C-W and Shirek, Greg J and
Zhu, Hao and Fuller, Jason C and Pereira, Jos{\’e}
Luiz Rezende and Ochoa, Luis F and de Araujo,
“Analytic considerations and design basis for the
IEEE distribution test feeders,” IEEE Trans. power
Syst., vol. 33, no. 3, pp. 3181–3188, 2017.
[13] R. Dugan, “OpenDSS,” EPRI Distribution System
Simulator, 2020.
https://sourceforge.net/projects/electricdss/.
[14] H. Gu, X. Chu, and Y. Liu, “Partitioning Active
Distribution Networks by Using Spectral
Clustering,” in 2020 IEEE Sustainable Power and
Energy Conference (iSPEC), Nov. 2020, pp. 510–
515, doi: 10.1109/iSPEC50848.2020.9351132.
[15] Y. Zou and H. Li, “Study on Power Grid Partition
and Attack Strategies Based on Complex Networks,”
Front. Phys., vol. 9, Jan. 2022, doi:
10.3389/fphy.2021.790218.
[16] F. Liu, B. Gu, S. Qin, K. Zhang, L. Cui, and G. Xie,
“Power grid partition with improved biogeography-
based optimization algorithm,” Sustain. Energy
Technol. Assessments, vol. 46, p. 101267, Aug.
2021, doi: 10.1016/j.seta.2021.101267.
[17] J. MacQueen, “Classification and analysis of
multivariate observations,” 5th Berkeley Symp.
Math. Stat. Probab., pp. 281–297, 1967.