Edición No. 20, Issue I, Julio 2023 
 
red  de  distribución  de  34  y  123  nodos,  logrando 
resultados  similares  a  los  obtenidos  por  otros  autores 
mencionados en el estado del arte.   
Se recomienda utilizar algoritmos de agrupamiento 
para  analizar  y  segmentar  redes  de  distribución  de 
diferentes  tamaños  y  características.  Esto  permitirá 
obtener una visión mas completa y precisa de los grupos 
presentes en la red. 
Se recomienda realizar un análisis de los resultados 
obtenidos  de  estos  algoritmos.  Esto  nos  ayudará  a 
comprender mejor el funcionamiento de la red y a tomar 
decisiones más informadas para su óptimo rendimiento. 
REFERENCIAS BIBLIOGRÁFICAS 
[1]  J. Castro, M. Saad, S. Lefebvre, D. Asber, and L. 
Lenoir,  “Coordinated  Voltage  Control  in 
Distribution Network with the Presence of DGs and 
Variable  Loads  Using  Pareto  and  Fuzzy  Logic,” 
Energies,  vol.  9,  no.  2,  p.  107,  Feb.  2016,  doi: 
10.3390/en9020107. 
[2]  Z. Ernesto Jaramillo, J. R. Castro, T. Castillo, and R. 
Reategui,  “Data  Mining  in  Electrical  Distribution 
Networks: Optimal Location of Pilot Bus,” in 2021 
IEEE  Fifth  Ecuador  Technical  Chapters  Meeting 
(ETCM),  Oct.  2021,  pp.  1–5,  doi: 
10.1109/ETCM53643.2021.9590646. 
[3]  E. Velasco-Ramírez, C. Ángeles-Camacho, and M. 
García-Martínez, “Redes de transmisión inteligente. 
Beneficios y riesgos,” Ing. Investig. y Tecnol., vol. 
14, no. 1, pp. 81–88, Jan. 2013, doi: 10.1016/S1405-
7743(13)72227-3. 
[4]  Y. Chai, L. Guo, C. Wang, Z. Zhao, X. Du, and J. 
Pan, “Network Partition  and  Voltage Coordination 
Control  for  Distribution  Networks  With  High 
Penetration of Distributed PV Units,” IEEE Trans. 
Power  Syst.,  vol.  33,  no.  3,  pp.  3396–3407,  May 
2018, doi: 10.1109/TPWRS.2018.2813400. 
[5]  “Community-detection-based  approach  to 
distribution  network  partition,”  CSEE  J.  Power 
Energy  Syst.,  2022,  doi: 
10.17775/CSEEJPES.2020.04150. 
[6]  B.  Zhao,  Z.  Xu,  C.  Xu,  C.  Wang,  and  F.  Lin, 
“Network Partition-Based Zonal Voltage Control for 
Distribution  Networks  With  Distributed  PV 
Systems,” IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 
4087–4098,  Sep.  2018,  doi: 
10.1109/TSG.2017.2648779. 
[7]  Y.  Chen,  M.  G.  Fadda,  and  A.  Benigni, 
“Decentralized  Load  Estimation  for  Distribution 
Systems  Using  Artificial  Neural  Networks,”  IEEE 
Trans. Instrum. Meas., vol. 68, no. 5, pp. 1333–1342, 
May 2019, doi: 10.1109/TIM.2018.2890052. 
 
[8]  M. Bahramipanah, M. Nick, R. Cherkaoui, and M. 
Paolone, “Network clustering for voltage control in 
active distribution network including energy storage 
systems,”  in  2015  IEEE  Power  &  Energy  Society 
Innovative  Smart  Grid  Technologies  Conference 
(ISGT),  Feb.  2015,  pp.  1–5,  doi: 
10.1109/ISGT.2015.7131916. 
[9]  C. Bonetti, J. Bianchotti, J. Vega, and G. Puccini, 
“Optimal  Segmentation  of  Electrical  Distribution 
Networks,” IEEE Lat. Am. Trans., vol. 19, no. 8, pp. 
1375–1382,  Aug.  2021,  doi: 
10.1109/TLA.2021.9475868. 
[10] D. Sharma, K. Thulasiraman, D. Wu, and J. N. Jiang, 
“A  network  science-based  k-means++  clustering 
method  for  power  systems  network  equivalence,” 
Comput.  Soc.  Networks,  vol.  6,  no.  1,  p.  4,  Dec. 
2019, doi: 10.1186/s40649-019-0064-3. 
[11] Z. M. Ali, A. M. Galal, S. Alkhalaf, and I. Khan, “An 
Optimized  Algorithm  for  Renewable  Energy 
Forecasting  Based  on  Machine  Learning,”  Intell. 
Autom. Soft Comput., vol. 35, no. 1, pp. 755–767, 
2023, doi: 10.32604/iasc.2023.027568. 
[12] L. R. and others Schneider, Kevin P and Mather, BA 
and Pal, BC and Ten, C-W and Shirek, Greg J and 
Zhu, Hao and Fuller, Jason C and Pereira, Jos{\’e} 
Luiz  Rezende  and  Ochoa,  Luis  F  and  de  Araujo, 
“Analytic  considerations  and  design  basis  for  the 
IEEE distribution test feeders,” IEEE Trans. power 
Syst., vol. 33, no. 3, pp. 3181–3188, 2017. 
[13] R.  Dugan,  “OpenDSS,”  EPRI  Distribution  System 
Simulator,  2020. 
https://sourceforge.net/projects/electricdss/. 
[14] H.  Gu,  X.  Chu,  and  Y.  Liu,  “Partitioning  Active 
Distribution  Networks  by  Using  Spectral 
Clustering,”  in  2020  IEEE  Sustainable  Power  and 
Energy Conference (iSPEC), Nov. 2020, pp. 510–
515, doi: 10.1109/iSPEC50848.2020.9351132. 
[15] Y. Zou and H. Li, “Study on Power Grid Partition 
and Attack Strategies Based on Complex Networks,” 
Front.  Phys.,  vol.  9,  Jan.  2022,  doi: 
10.3389/fphy.2021.790218. 
[16] F. Liu, B. Gu, S. Qin, K. Zhang, L. Cui, and G. Xie, 
“Power grid partition with improved biogeography-
based  optimization  algorithm,”  Sustain.  Energy 
Technol.  Assessments,  vol.  46,  p.  101267,  Aug. 
2021, doi: 10.1016/j.seta.2021.101267. 
[17] J.  MacQueen,  “Classification  and  analysis  of 
multivariate  observations,”  5th  Berkeley  Symp. 
Math. Stat. Probab., pp. 281–297, 1967.