Edición No. 20, Issue II, Enero 2024 
 
[19] E.  Bellos  and  C.  Tzivanidis,  “A  detailed 
investigation  of  an  evacuated  flat  plate  solar 
collector,”  Appl  Therm  Eng,  vol.  234,  p.  121334, 
Nov.  2023,  doi: 
10.1016/J.APPLTHERMALENG.2023.121334. 
[20] F.  J.  Diez,  L.  M.  Navas-Gracia,  A.  Martínez-
Rodríguez,  A.  Correa-Guimaraes,  and  L.  Chico-
Santamarta, “Modelling of a flat-plate solar collector 
using artificial neural networks for different working 
fluid (water) flow rates,” Solar Energy, vol. 188, pp. 
1320–1331,  2019,  doi: 
https://doi.org/10.1016/j.solener.2019.07.022. 
[21] I. Visa et al., “Design and experimental optimisation 
of  a  novel  flat  plate  solar  thermal  collector  with 
trapezoidal  shape  for  facades  integration,”  Appl 
Therm  Eng,  vol.  90,  pp.  432–443,  2015,  doi: 
https://doi.org/10.1016/j.applthermaleng.2015.06.0
26. 
[22] D. Wang et al., “Comparative analysis of heat loss 
performance of flat plate solar collectors at different 
altitudes,” Solar Energy, vol. 244, pp. 490–506, Sep. 
2022, doi: 10.1016/J.SOLENER.2022.08.060. 
[23] K.  Deshmukh,  S.  Karmare,  and  P.  Patil, 
“Experimental  investigation  of  convective  heat 
transfer performance of TiN nanofluid charged U-
pipe evacuated tube solar thermal collector,”  Appl 
Therm  Eng,  vol.  225,  p.  120199,  May  2023,  doi: 
10.1016/J.APPLTHERMALENG.2023.120199. 
[24] M. Carmona and M. Palacio, “Thermal modelling of 
a flat plate solar collector with latent heat storage 
validated  with  experimental  data  in  outdoor 
conditions,”  Solar  Energy,  vol.  177,  pp.  620–633, 
Jan. 2019, doi: 10.1016/J.SOLENER.2018.11.056. 
[25] H. R. Robles-Campos, B. J. Azuaje-Berbecí, C. J. 
Scheller,  A.  Angulo,  and  F.  Mancilla-David, 
“Detailed  modeling  of  large  scale  photovoltaic 
power  plants  under  partial  shading  conditions,” 
Solar Energy, vol. 194, pp. 485–498, Dec. 2019, doi: 
10.1016/J.SOLENER.2019.10.043. 
[26] D. G. Gunjo, V. K. Yadav, D. K. Sinha, I. E. Elseesy, 
G. M. Sayeed Ahmed, and M. A. H. Abdelmohimen, 
“Development and performance evaluation of solar 
heating system for biogas production process,” Case 
Studies in Thermal Engineering, vol. 39, p. 102438, 
Nov. 2022, doi: 10.1016/J.CSITE.2022.102438. 
[27] J. Mustafa, S. Alqaed, and R. Kalbasi, “Challenging 
of  using  CuO  nanoparticles  in  a  flat  plate  solar 
collector-  Energy  saving  in  a  solar-assisted  hot 
process stream,” J Taiwan Inst Chem Eng, vol. 124, 
pp.  258–265,  Jul.  2021,  doi: 
10.1016/J.JTICE.2021.04.003. 
[28] J.  J.  Fiuk  and  K.  Dutkowski,  “Experimental 
investigations on thermal efficiency of a prototype 
passive  solar  air  collector  with  wavelike  baffles,” 
Solar Energy, vol. 188, pp. 495–506, Aug. 2019, doi: 
10.1016/J.SOLENER.2019.06.030. 
[29] R. J. Xu, Y. Q. Zhao, H. Chen, Q.  P.  Wu, L. W. 
Yang,  and  H.  S.  Wang,  “Numerical  and 
experimental investigation of a compound parabolic 
concentrator-capillary tube solar collector,” Energy 
Convers Manag, vol. 204, p. 112218, Jan. 2020, doi: 
10.1016/J.ENCONMAN.2019.112218. 
[30] W.  Quitiaquez,  J.  Estupiñán-Campos,  C.  Nieto-
Londoño, and P. Quitiaquez, “CFD Analysis of Heat 
Transfer  Enhancement  in  a  Flat-Plate  Solar 
Collector/Evaporator  with  Different  Geometric 
Variations in the Cross Section,” Energies (Basel), 
vol.  16,  no.  15,  p.  5755,  Aug.  2023,  doi: 
10.3390/en16155755. 
[31] I.  Simbaña,  W.  Quitiaquez,  J.  Estupiñán,  F. 
Toapanta-Ramos, and L. Ramírez, “Evaluación del 
rendimiento  de  una  bomba  de  calor  de  expansión 
directa  asistida  por  energía  solar  mediante 
simulación  numérica  del  proceso  de 
estrangulamiento  en  el  dispositivo  de  expansión,” 
Revista Técnica “energía,” vol. 19, no. 1, pp. 110–
119,  Jul.  2022,  doi: 
10.37116/REVISTAENERGIA.V19.N1.2022.524. 
[32] S. T. Mohammad, H. H. Al-Kayiem, M. A. Aurybi, 
and A. K. Khlief, “Measurement of global and direct 
normal solar energy radiation in Seri Iskandar and 
comparison  with  other  cities  of  Malaysia,”  Case 
Studies in Thermal Engineering, vol. 18, p. 100591, 
2020,  doi: 
https://doi.org/10.1016/j.csite.2020.100591. 
[33] E.  Nadal, J. J. Ródenas, E. M. Sánchez-Orgaz,  S. 
López-Real,  and  J.  Martí-Pellicer,  “Sobre  la 
utilización de códigos de elementos finitos basados 
en  mallados  cartesianos  en  optimización 
estructural,”  Revista  Internacional  de  Métodos 
Numéricos para Cálculo y Diseño en Ingeniería, vol. 
30,  no.  3,  pp.  155–165,  2014,  doi: 
10.1016/j.rimni.2013.04.009. 
[34] J. G. Ardila-Marín, D. A. Hincapié-Zuluaga, and J. 
A. Sierra-del-Rïo, “Independencia de malla en tubos 
torsionados  para  intercambio  de  calor:  caso  de 
estudio,” Revista de la Facultad de Ciencias, vol. 5, 
no.  1,  pp.  124–140,  Jan.  2016,  doi: 
10.15446/rev.fac.cienc.v5n1.54231. 
[35] J. Manuel Rachel Him, L. A. Ortega, and J. Manuel 
González, “Actividades inmobiliarias, empresariales 
y  de  alquiler,  y  su  efecto  en  la  economía  de 
Panamá.,” 2019. 
[36] M. Moldovan, I. Rusea, and I. Visa, “Optimising the 
thickness  of  the  water  layer  in  a  triangle  solar 
thermal  collector,”  Renew  Energy,  vol.  173,  pp. 
381–388,  Aug.  2021,  doi: 
10.1016/J.RENENE.2021.03.145.