Edición No. 20, Issue II, Enero 2024 
 
del  algoritmo  en  un  entorno  controlado  utilizando 
equipos físicos, aprovechando la ventaja de la presente 
aplicación  en  el  software HYPERSIM, el  cual permite 
simulaciones  en  tiempo  real.  Esta  evaluación  práctica 
facilitaría  una  comprensión  más  profunda  del 
rendimiento  y la eficacia  del algoritmo en condiciones 
reales,  proporcionando  perspectivas  de  resultados 
valiosos que permitan validar su aplicabilidad y ajustes 
necesarios en la implementación en sistemas 
 
6. REFERENCIAS BIBLIOGRÁFICAS 
[1]  UNCTAD.  Secretariat,  “The  future  energy  matrix 
and renewable energy :: implications for energy and 
food security : note /: by the UNCTAD Secretariat.” 
UN,  Jan.  12,  2010.  Accessed:  Dec.  27,  2023. 
[Online].  Available: 
https://digitallibrary.un.org/record/676170 
[2]  “2023  Levelized  Cost  Of  Energy+  |  Lazard.” 
Accessed:  Dec.  27,  2023.  [Online].  Available: 
https://www.lazard.com/research-insights/2023-
levelized-cost-of-energyplus/ 
[3]  M.  S.  Mahmoud,  S.  Azher  Hussain,  and  M.  A. 
Abido,  “Modeling  and  control  of  microgrid:  An 
overview,” J Franklin Inst, vol. 351, no. 5, pp. 2822–
2859, 2014, doi: 10.1016/j.jfranklin.2014.01.016. 
[4]  C. G. Villegas-Mier, J. Rodriguez-Resendiz, J. M. 
Álvarez-Alvarado,  H.  Rodriguez-Resendiz,  A.  M. 
Herrera-Navarro,  and  O.  Rodríguez-Abreo, 
“Artificial  neural  networks in  mppt  algorithms for 
optimization  of  photovoltaic  power  systems:  A 
review,”  Micromachines,  vol.  12,  no.  10.  MDPI, 
Oct. 01, 2021. doi: 10.3390/mi12101260. 
[5]  “Photovoltaic  Energy  Factsheet  |  Center  for 
Sustainable  Systems.”  Accessed:  Dec.  27,  2023. 
[Online].  Available: 
https://css.umich.edu/publications/factsheets/energy
/photovoltaic-energy-factsheet 
[6]  M. A. G. De Brito, L. Galotto, L. P. Sampaio, G. De 
Azevedo Melo, and C. A. Canesin, “Evaluation of 
the  main  MPPT  techniques  for  photovoltaic 
applications,”  IEEE  Transactions  on  Industrial 
Electronics, vol. 60, no. 3, pp. 1156–1167, 2013, doi: 
10.1109/TIE.2012.2198036. 
[7]  N.  Padmavathi,  A.  Chilambuchelvan,  and  N.  R. 
Shanker, “Maximum Power Point Tracking During 
Partial Shading Effect in PV System Using Machine 
Learning  Regression  Controller,”  Journal  of 
Electrical Engineering and Technology, vol. 16, no. 
2,  pp.  737–748,  Mar.  2021,  doi:  10.1007/s42835-
020-00621-4. 
[8]  C.  Lozada  and  D.  Panchi,  “Implementación  de 
Hardware  In  The  Loop  para  el  Análisis  de 
Escenarios  de  Control  de  Frecuencia  en  una 
Microrred  Utilizando  WAMS,”  Revista  Técnica 
“energía,” vol. 19, no. 2, pp. 69–80, Jan. 2023, doi: 
10.37116/revistaenergia.v19.n2.2023.558. 
[9]  M. Sarvi and A. Azadian, “A comprehensive review 
and  classified  comparison  of  MPPT  algorithms  in 
PV  systems,”  Energy  Systems,  vol.  13,  no.  2. 
Springer Science and Business Media Deutschland 
GmbH,  pp.  281–320,  May  01,  2022.  doi: 
10.1007/s12667-021-00427-x. 
[10] R. B. A. Koad, A. F. Zobaa, and A. El-Shahat, “A 
Novel MPPT Algorithm Based on Particle Swarm 
Optimization  for  Photovoltaic  Systems,”  IEEE 
Trans  Sustain Energy,  vol. 8, no.  2, pp. 468–476, 
Apr. 2017, doi: 10.1109/TSTE.2016.2606421. 
[11] R.  Rajesh  and  M.  Carolin,  “Renewable  and 
Sustainable Energy Reviews,” Elsevier, 2015. 
[12] Chiu  Chian-Song,  “T–S  fuzzy  maximum  power 
point  tracking  control  of  solar  power  generation 
systems,” IEEE Trans Energy Convers , 2010. 
[13] Peter  Pradeep  and  Agarwal  Vivek,  “On  the  Input 
Resistance  of  a  Reconfigurable  Switched 
CapacitorDC–DC  Converter  -  Based  Maximum 
Power  Point  Tracker  of  a  Photovoltaic  Source,” 
IEEE Trans on Power Electronics , 2012. 
[14] S. Motahhir, A. El Hammoumi, and A. El Ghzizal, 
“The most used MPPT algorithms: Review and the 
suitable  low-cost  embedded  board  for  each 
algorithm,” Journal of Cleaner Production, vol. 246. 
Elsevier  Ltd,  Feb.  10,  2020.  doi: 
10.1016/j.jclepro.2019.118983. 
[15] Daniel.  Peña,  Análisis  de  datos  multivariantes. 
McGraw-Hill/Interamericana, 2002. 
[16] P.  Rujasiri  and  B.  Chomtee,  “Comparison  of 
Clustering  Techniques  for  Cluster  Analysis,”  Nat. 
Sci.), vol. 43, pp. 378–388, 2009. 
[17] M.  Kantardzic,  Data  Mining:  Concepts,  Models, 
Methods,  and  Algorithms,  Third  Edition.  Wiley 
Sons, Inc., John, 2019. 
[18] S. Bae and A. Kwasinski, “Dynamic modeling and 
operation  strategy  for  a  microgrid  with  wind  and 
photovoltaic  resources,”  IEEE  Trans  Smart  Grid, 
vol.  3,  no.  4,  pp.  1867–1876,  2012,  doi: 
10.1109/TSG.2012.2198498. 
[19] S.  Raychaudhuri,  “Introduction  to  Monte  Carlo 
simulation”,  en  2008  Winter  Simul.  Conf. (WSC), 
Miami, FL, USA, 7–10 de diciembre de 2008. IEEE, 
2008.