Meneses et al. / Regeneration of deteriorated internal combustion engine components used in thermal power plants
[19] R. Kian, T. Bektaş, and D. Ouelhadj, “Optimal
spare parts management for vessel maintenance
scheduling,” Ann. Oper. Res., vol. 272, no. 1, pp.
323–353, 2019, doi: 10.1007/s10479-018-2907-y.
[20] J. Zhou, T. Li, and D. Wang, “A Novel Approach
of Studying the Fluid–Structure–Thermal
Interaction of the Piston–Cylinder Interface of
Axial Piston Pumps,” Appl. Sci., vol. 11, no. 19,
2021, doi: 10.3390/app11198843.
[21] K. P. Dahal and N. Chakpitak, “Generator
maintenance scheduling in power systems using
metaheuristic-based hybrid approaches,” Electr.
Power Syst. Res., vol. 77, no. 7, pp. 771–779, 2007,
doi: https://doi.org/10.1016/j.epsr.2006.06.012.
[22] I. Simbaña, W. Quitiaquez, J. Estupiñán, F.
Toapanta-Ramos, and L. Ramírez, “Evaluación del
rendimiento de una bomba de calor de expansión
directa asistida por energía solar mediante
simulación numérica del proceso de
estrangulamiento en el dispositivo de expansión,”
Rev. Técnica “energía,” vol. 19, no. 1, pp. 110–
119, 2022, doi:
10.37116/revistaenergia.v19.n1.2022.524.
[23] A. Froger, M. Gendreau, J. E. Mendoza, É. Pinson,
and L.-M. Rousseau, “Maintenance scheduling in
the electricity industry: A literature review,” Eur. J.
Oper. Res., vol. 251, no. 3, pp. 695–706, 2016, doi:
https://doi.org/10.1016/j.ejor.2015.08.045.
[24] D. Svetlizky et al., “Directed energy deposition
(DED) additive manufacturing: Physical
characteristics, defects, challenges and
applications,” Mater. Today, vol. 49, pp. 271–295,
2021, doi:
https://doi.org/10.1016/j.mattod.2021.03.020.
[25] G. Piscopo and L. Iuliano, “Current research and
industrial application of laser powder directed
energy deposition,” Int. J. Adv. Manuf. Technol.,
vol. 119, no. 11, pp. 6893–6917, 2022, doi:
10.1007/s00170-021-08596-w.
[26] J. Bokrantz, A. Skoogh, C. Berlin, T. Wuest, and J.
Stahre, “Smart Maintenance: a research agenda for
industrial maintenance management,” Int. J. Prod.
Econ., vol. 224, p. 107547, 2020, doi:
https://doi.org/10.1016/j.ijpe.2019.107547.
[27] R. Liu, Z. Wang, T. Sparks, F. Liou, and J.
Newkirk, “13 - Aerospace applications of laser
additive manufacturing,” in Laser Additive
Manufacturing, M. Brandt, Ed., in Woodhead
Publishing Series in Electronic and Optical
Materials. Woodhead Publishing, 2017, pp. 351–
371. doi: https://doi.org/10.1016/B978-0-08-
100433-3.00013-0.
[28] H. Wang et al., “Review on adaptive control of
laser-directed energy deposition,” Opt. Eng., vol.
59, no. 07, p. 1, 2020, doi:
10.1117/1.oe.59.7.070901.
[29] C. Barr, R. A. Rahman Rashid, S. Palanisamy, J.
Watts, and M. Brandt, “Examination of steel
compatibility with additive manufacturing and
repair via laser directed energy deposition,” J. Laser
Appl., vol. 35, no. 2, 2023, doi: 10.2351/7.0000952.
[30] D. K. Kim, D. Y. Kim, S. H. Ryu, and D. J. Kim,
“Application of nimonic 80A to the hot forging of
an exhaust valve head,” J. Mater. Process. Technol.,
vol. 113, no. 1, pp. 148–152, 2001, doi:
https://doi.org/10.1016/S0924-0136(01)00700-2.
[31] Z. Lestan, M. Milfelner, J. Balic, M. Brezocnik,
and I. Karabegovic, “Laser deposition of Metco
15E, Colmony 88 and VIM CRU 20 powders on
cast iron and low carbon steel,” Int. J. Adv. Manuf.
Technol., vol. 66, no. 9, pp. 2023–2028, 2013, doi:
10.1007/s00170-012-4478-4.
[32] V. Shankar, K. Bhanu Sankara Rao, and S. L.
Mannan, “Microstructure and mechanical
properties of Inconel 625 superalloy,” J. Nucl.
Mater., vol. 288, no. 2, pp. 222–232, 2001, doi:
https://doi.org/10.1016/S0022-3115(00)00723-6.
[33] S. Pratheesh Kumar, S. Elangovan, R. Mohanraj,
and J. R. Ramakrishna, “A review on properties of
Inconel 625 and Inconel 718 fabricated using direct
energy deposition,” Mater. Today Proc., vol. 46,
pp. 7892–7906, 2021, doi:
https://doi.org/10.1016/j.matpr.2021.02.566.
[34] A. Strondl, R. Fischer, G. Frommeyer, and A.
Schneider, “Investigations of MX and γ′/γ″
precipitates in the nickel-based superalloy 718
produced by electron beam melting,” Mater. Sci.
Eng. A, vol. 480, pp. 138–147, 2008, doi:
10.1016/j.msea.2007.07.012.
[35] Y. L. Hu, Y. L. Li, S. Y. Zhang, X. Lin, Z. H.
Wang, and W. D. Huang, “Effect of solution
temperature on static recrystallization and ductility
of Inconel 625 superalloy fabricated by directed
energy deposition,” Mater. Sci. Eng. A, vol. 772, p.
138711, 2020, doi:
https://doi.org/10.1016/j.msea.2019.138711.
[36] Z. Li, J. Chen, S. Sui, C. Zhong, X. Lu, and X. Lin,
“The microstructure evolution and tensile
properties of Inconel 718 fabricated by high-
deposition-rate laser directed energy deposition,”
Addit. Manuf., vol. 31, p. 100941, 2020, doi:
https://doi.org/10.1016/j.addma.2019.100941.
[37] H. González-Barrio, A. Calleja-Ochoa, L. Norberto
López de Lacalle, and A. Lamikiz, “Hybrid
manufacturing of complex components: Full
methodology including laser metal deposition
(LMD) module development, cladding geometry
estimation and case study validation,” Mech. Syst.