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Abstract

This paper presents a deep learning-based methodology
for short-term stability prediction in electrical systems
with high renewable generation penetration. Based on
dynamic simulations performed on the 39-bus IEEE
system, including scenarios with wind and photovoltaic
integration, a database was constructed to train a hybrid
recurrent convolutional neural network (RCNN-EE)
model. The model uses strategically selected electrical
variables to capture both transient dynamics and voltage
collapse phenomena, achieving accurate classification
of the system state. The results obtained demonstrate
superior performance compared to traditional
architectures, achieving outstanding metrics even under
unbalanced conditions. In addition, its applicability in
real time is validated, with inference times of less than
50 milliseconds, which demonstrates its potential for
implementation in electrical system protection and
control schemes.

Index terms— Short-term stability, deep learning,
dynamic simulation, real-time prediction, renewable
generation.
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Resumen

Este trabajo presenta una metodologia basada en
aprendizaje profundo para la prediccion del estado de
estabilidad de corto plazo en sistemas eléctricos con alta
penetracion de generacion renovable. A partir de
simulaciones dinamicas realizadas sobre el sistema
IEEE de 39 barras, que incluyen escenarios con
integracion eolica y fotovoltaica, se construyd una base
de datos que permiti6 entrenar un modelo hibrido de red
neuronal convolucional recurrente (RCNN-EE). El
modelo utiliza variables eléctricas seleccionadas
estratégicamente para capturar tanto la dinamica
transitoria como los fenomenos de colapso de tension,
logrando una clasificacion precisa del estado del
sistema. Los resultados obtenidos demuestran un
rendimiento  superior  frente a  arquitecturas
tradicionales, alcanzando métricas destacadas sobre el
95%, incluso en condiciones de clases desbalanceadas.
Ademas, se valida su aplicabilidad en tiempo real, con
tiempos de inferencia inferiores a 50 milisegundos, lo
cual evidencia su potencial para su implementacion en
esquemas de proteccion y control del sistema eléctrico.

Palabras clave— Estabilidad de corto plazo,
aprendizaje profundo, simulacion dinamica, prediccion
en tiempo real, generacion renovable.

Forma sugerida de citacion: Guafiuna, G.; Colomé, G.; Tapia, E. (2026). “Prediccion del Estado de Estabilidad de Corto Plazo en
Sistemas de Potencia con Integracion de Generacion Renovable Utilizando Aprendizaje Profundo”. Revista Técnica “energia”.

No. 22, Issue II, Pp. 1-12.
ISSN On-line: 2602-8492 - ISSN Impreso: 1390-5074
Doi: https://doi.org/10.37116/revistaenergia.v22.n2.2026.723

© 2026 Autores

No Comercial 4.0

Esta publicacion estd bajo una licencia internacional Creative Commons Reconocimiento —




Edicion No. 22, Issue II, Enero 2026

ACRONIMOS
ACC: Exactitud (Accuracy).

CNN: Red Neuronal Convolucional (Convolutional
Neural Network).

CU: Proporcion de casos inestables correctamente
identificados (Correct Unstable).

DL: Aprendizaje Profundo (Deep Learning).

EECP: Estado de Estabilidad de Corto Plazo.

ET: Estabilidad Transitoria.

ETCP: Estabilidad de Tension de Corto Plazo.

FC: Capa Totalmente Conectada (Fully Connected).
FER: Fuentes de Energia Renovable.

FV: Fotovoltaica.

G-mean: Media Geométrica.

IBR: Recursos Basados en Inversores (Inverter-Based
Resources).

LSTM: Memoria a Largo y Corto Plazo (Long Short-
Term Memory).

MI: Motores de Induccion.

PMU: Unidad de
Measurement Unit).

RCNN-EE: Red Neuronal Convolucional Recurrente
(modelo propuesto para Evaluacion de Estabilidad).

Medicion  Fasorial (Phasor

SEP: Sistema Eléctrico de Potencia.
SS: Sensibilidad para la clase estable (Stable Sensitivity).
1. INTRODUCCION

La creciente penetracion de fuentes de generacion
renovable, especialmente edlica y fotovoltaica, esta
modificando el comportamiento dindmico de los
sistemas eléctricos modernos. Estas tecnologias han
reemplazado progresivamente a los generadores
convencionales, reduciendo asi la inercia del sistema y
alterando las reservas de potencia activa y reactiva frente
a perturbaciones severas [1]. Como consecuencia, los
sistemas eléctricos presentan una mayor vulnerabilidad
frente a fendmenos dinamicos que comprometen su
estabilidad en escalas de tiempo cortas, los cuales pueden
clasificarse en dos tipos principales de inestabilidad: la
transitoria (ET) y la de tension de corto plazo (ETCP) [2].
La ET se refiere a la capacidad del sistema para mantener
el sincronismo de sus generadores frente a una
perturbacion severa, como un cortocircuito o la pérdida
repentina de generacion. Por otro lado, la ETCP esta
dominada por cargas dindmicas, principalmente motores
de induccion y dispositivos electronicos, los cuales
durante fallas pueden exigir grandes cantidades de
potencia reactiva, causando colapsos de tension [3].

Los enfoques clasicos para evaluar estos tipos de
inestabilidades utilizan simulaciones dinamicas no
lineales o indices como el Short-Term Voltage Stability
Index (SVSI), pero presentan limitaciones para su
aplicacion en tiempo real, debido a su elevado costo
computacional y dependencia de modelos precisos [4].
Frente a este desafio, los métodos basados en datos han
ganado protagonismo, impulsados por la creciente
disponibilidad de mediciones en tiempo real
proporcionadas por Unidades de Medicion Fasorial
(PMU) [5]. Estas unidades permiten capturar con alta
resolucion temporal variables eléctricas clave (magnitud
de tension, angulo de tension, frecuencia), abriendo la
puerta al uso de técnicas de aprendizaje automatico para
evaluar en tiempo real el estado dinamico del sistema.

Entre las primeras aplicaciones de inteligencia
artificial, se destacan métodos de clasificacion con
arboles de decision, maquinas de soporte vectorial
(SVM) y bosques aleatorios [6]. Sin embargo, estos
enfoques de aprendizaje automatico requieren un analisis
detallado de sus caracteristicas y mno capturan
adecuadamente las relaciones espaciales ni temporales
presentes en los datos. Mientras que los métodos de
aprendizaje  profundo  (DL) permiten  extraer
automaticamente representaciones espaciotemporales
directamente de los datos, logrando una capacidad
predictiva superior. Aunque tradicionalmente los
fenomenos de estabilidad transitoria y de tension de corto
plazo se han estudiado por separado, existe un creciente
consenso en que su analisis conjunto es esencial, debido
a que ambos tipos de inestabilidad se desarrollan en la
misma ventana de tiempo afectando negativamente al
sistema de potencia particularmente en condiciones de
alta penetracion de energias renovables [7].

Por su parte, en [8] se propone una metodologia de
evaluacion de la vulnerabilidad dindmica del sistema
eléctrico, tomando en consideracion cinco diferentes
sintomas de alerta del sistema tales como: inestabilidad
transitoria, inestabilidad oscilatoria, inestabilidad de
voltaje de corto plazo, inestabilidad de frecuencia de
corto plazo y sobrecargas. Recientes avances proponen
superar la separacion tradicional entre ET y ETCP
mediante la evaluacion simultdnea de ambos fenémenos.
En particular, el estudio disponible en [9], plantea una
metodologia  basada en  Redes  Neuronales
Convolucionales Recurrentes (RCNN) que clasifica el
estado de estabilidad de corto plazo (EECP) como
estable, inestable por pérdida de sincronismo o inestable
por colapso de tension. Esta propuesta destaca por
integrar variables de magnitud de tension y angulo de
tension medidas en barras clave del sistema, logrando
una alta precision predictiva aiin bajo escenarios severos.
Sin embargo, dicha metodologia no contempla la
integracion de generacion renovable en los escenarios
analizados.
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Por lo tanto, el presente trabajo tiene como objetivo
extender la metodologia de evaluacion predictiva de [9],
incorporando modelos dindmicos de generacion
renovable. A través de una base de datos construida con
series temporales, se entrena un nuevo modelo RCNN
para estimar el estado de estabilidad de corto plazo en
sistemas con alta penetracion de renovables.

El presente trabajo se estructura en cinco capitulos
que describen el procedimiento para la evaluacion del
estado de estabilidad del sistema. En el Capitulo 2 se
desarrolla el sustento técnico y matematico necesario
para comprender el fenomeno de la estabilidad de corto
plazo y su evaluacion con técnicas de aprendizaje
profundo. El Capitulo 3 expone la metodologia
implementada, mientras que el Capitulo 4 presenta el
analisis de los resultados obtenidos. Finalmente, el
Capitulo 5 resume las principales conclusiones del
estudio.

2. MARCO TEORICO

El siguiente capitulo tiene como objetivo brindar una
vision general de los conceptos fundamentales
relacionados a la estabilidad de corto plazo en sistemas
eléctricos de potencia (SEP).

2.1 Estabilidad de Corto Plazo

La estabilidad en sistemas de potencia se define como
la capacidad de un SEP para recuperar un estado de
equilibrio tras una perturbacion, manteniendo sus
variables eléctricas dentro de limites operativos
aceptables. Tradicionalmente, esta se ha clasificado en
estabilidad angular, de tension y de frecuencia. No
obstante, la integracion masiva de generacion renovable
basada en inversores (Inverter-Based Resources, IBR)
introduce dindmicas electromagnéticas rapidas que no
estin  presentes en las maquinas  sincronas
convencionales.

De acuerdo con la extension de la clasificacion
clasica de estabilidad propuesta en [10], la presencia de
convertidores electronicos da lugar a una nueva
categoria: la estabilidad impulsada por convertidores.
Esta categoria se divide en fenémenos de interaccion
lenta y fenomenos de interaccion rapida, relacionados
con los lazos de control de los convertidores y su
interaccion con la red. En el presente trabajo, si bien se
reconoce la relevancia de estas nuevas categorias, el
alcance se centra especificamente en la estabilidad
angular transitoria y la estabilidad de tension de corto
plazo. Por su parte, el analisis detallado de las
interacciones de control de alta frecuencia se propone
como una linea de trabajo futuro [11].

2.1.1  Estabilidad de tension de corto plazo

La estabilidad de tension de corto plazo esta
fuertemente influenciada por el comportamiento
dinamico de las cargas, particularmente los motores de
induccion (MI), que pueden estancarse y provocar una
alta demanda de potencia reactiva. Por lo tanto, si la

regulacion y el soporte de tensién no alcanzan a cubrir
esa demanda, la tension no se recupera y el sistema deriva
a la inestabilidad de tension en segundos [11].

2.1.2  Estabilidad transitoria

La ET se refiere a la capacidad del sistema para
mantener el sincronismo de los generadores sincronicos
después de perturbaciones grandes. Si el equilibrio entre
par eléctrico y mecanico no se restablece, el angulo
rotorico crece de manera sostenida y se pierde la
sincronia [12].

Ademas, con la creciente penetracion de generacion
renovable, es necesario evaluar de manera conjunta la ET
y la ETCP, ya que ambas comparten una misma ventana
temporal, pero responden a mecanismos distintos. Por
ello, resulta primordial aplicar metodologias que
discriminen si la inestabilidad es provocada por pérdida
de sincronismo o por colapso de tension [13].

2.1.3  Modelamiento de la dinamica del SEP

Para examinar el comportamiento dinamico de un
sistema  eléctrico, es indispensable representar
matematicamente cada uno de sus componentes fisicos
mediante ecuaciones algebraico-diferenciales (DAE), las
cuales describen la evolucion temporal del sistema a
partir de sus condiciones iniciales. En [9], describe el uso
de modelos de sexto orden para generadores sincronicos,
modelos de quinto orden para MI y modelos ZIP para
cargas estaticas. Esta representacion asegura que
fendmenos como estancamiento o caidas de velocidad
durante fallas sean correctamente simulados.

2.2 Modelacion de Generacion Renovable

El modelado de fuentes renovables basadas en
convertidores de potencia completa (full converter),
como la fotovoltaica (FV) y la edlica tipo 4, es
fundamental para el analisis dinamico de sistemas de
potencia, ver Fig. 1. Estas unidades se conectan mediante
electronica de potencia que desacopla mecanicamente la
generacion de la red, permitiendo un control preciso de
la potencia activa y reactiva inyectada [14], [15].

ac/de defac RED

(5]

PV system l]

.
Figura 1: Representacion Esquemitica de un Generador Eélico y
una Planta Fotovoltaica Conectados a la Red [14], [16]
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En este contexto, la base de los modelos IBR es un
lazo de control interno y rapido de corriente [17]. Es
importante aclarar que, si bien la literatura técnica
diferencia  explicitamente las  arquitecturas de
seguimiento de red (Grid-Following, GFL) y de
formacion de red (Grid-Forming, GFM), la clasificacion
de un modelo genérico no depende solo de su
denominacion, sino de su esquema de control.

Esta investigacion analiza especificamente el
rendimiento de inversores configurados para el
seguimiento de red, con el fin de inyectar potencia y
proporcionar servicios auxiliares de frecuencia y tension.
Cabe sefialar, sin embargo, que la arquitectura de los
modelos genéricos utilizados posibilita, a través de la
modificacion especifica de sus parametros y lazos de
control, emular comportamientos propios de la
formacion de red. Dicha versatilidad es fundamental para
asegurar la estabilidad del sistema frente a perturbaciones
significativas.

Estos generadores se modelan mediante bloques
validados por el WECC: REGC_A para el generador,
REEC_A como controlador eléctrico, WTGT A para el
tren mecanico (en edlica), y REPC A como controlador
a nivel planta, ver Fig. 2 [18].
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Figura 2: Diagrama de Bloques Funcionales del Modelo Dinamico
Tipo 4 [18]

2.3  Aprendizaje Profundo

El aprendizaje automatico es un campo de la
inteligencia artificial que permite a los sistemas aprender
automaticamente a partir de datos. Los algoritmos se
clasifican en aprendizaje supervisado, no supervisado y
por refuerzo. Dentro del aprendizaje supervisado, existe
el aprendizaje profundo, que se caracteriza por utilizar
una cascada de multiples capas de unidades de
procesamiento no lineal para la extraccion y
transformacion de caracteristicas de forma automética.
Cuando la informacion de entrada consiste en series
temporales de diferentes variables, como en el caso del
analisis dinamico de estabilidad de sistemas eléctricos, es
necesario emplear modelos que puedan capturar tanto las
caracteristicas espaciales como las temporales de los
datos. Para ello, se puede utilizar una arquitectura hibrida
basada en aprendizaje profundo denominada Red
Neuronal Convolucional Recurrente. Esta red combina
una primera etapa convolucional (CNN), encargada de
extraer patrones espaciales relevantes de la sefial (por

ejemplo, relaciones entre diferentes barras), con una
segunda etapa formada por capas LSTM, que permiten
extraer las dependencias temporales en la evolucion de
las variables eléctricas durante la simulacion. Las capas
densas posteriores se encargan de relacionar e integrar las
caracteristicas o patrones extraidos por las capas LSTM
o CNN, permitiendo asi una representacion conjunta de
la dinamica del sistema. Finalmente, una capa de salida
con la funcion de activacion correspondiente (por
ejemplo, softmax o sigmoide) clasifica el estado de
estabilidad del sistema [19].

3. METODOLOGIA

Este capitulo presenta el procedimiento general
desarrollado para la evaluacion predictiva del EECP
mediante un modelo de aprendizaje profundo (RCNN-
EE) [9]. En esta version, se ha incorporado generacion
renovable (fotovoltaica y eblica) como parte de los
escenarios de operacion, lo que permite ademas analizar
el impacto de su penetracion sobre la estabilidad
dinamica del sistema bajo estudio.

Series de tiempos
de variables del
sistema eléctrico.

z RCNN-EE:
Evaluacion y Clasificador del | prediccion del
etiquetado del EECP. estado de
EECP. estabilidad con
RCNN-EE

Figura 3: Marco General de la Metodologia Implementada

La Fig. 3 ilustra el esquema general de la
metodologia, cuya primera etapa corresponde a la
generacion de la base de datos. Esta se compone de: a)
series de tiempo (ST) de variables eléctricas del sistema
obtenidas mediante simulaciones dinamicas ante diversas
contingencias, bajo un amplio espectro de escenarios
operativos que consideran la integracion de generacion
solar y edlica; y b) la clasificacion y etiquetado del estado
de estabilidad de corto plazo, utilizando el monitoreo de
una variable que refleje de manera efectiva la ocurrencia
de un fendmeno de inestabilidad de tension de corto
plazo.

La segunda etapa contempla el entrenamiento fuera
de linea del modelo de red neuronal convolucional
recurrente. Este modelo recibe como entrada las variables
eléctricas generadas en la primera etapa y produce como
salida la clasificacion del estado de estabilidad de corto
plazo del sistema, permitiendo ademas analizar su
desempefio mediante métricas especificas y comparar su
eficacia con otras arquitecturas de aprendizaje profundo.
Finalmente, el modelo entrenado es aplicado en linea
para realizar la evaluacion del EECP bajo la ocurrencia
de alguna contingencia en tiempo real.
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31 Base de Datos

La base de datos utilizada para el entrenamiento y
validacion del modelo se construydo a partir de
simulaciones dinamicas realizadas en el software
PowerFactory DIgSILENT sobre el sistema IEEE New
England de 39 barras. Se incorporaron nuevas unidades
de generacion renovable (fotovoltaica y eblica)
conectadas en distintas barras. La ubicacion de estas
fuentes en los nodos del sistema se realiz6 en funcion del
potencial ~ del  recurso  primario  disponible,
complementando asi la generaciéon convencional,
conforme al analisis desarrollado en [13].

3.1.1  Escenarios de operacion

Se utilizaron multiples escenarios de operacion
considerados en [9]. Los cuales se agruparon en bandas
horarias (pico, valle y resto), mediante el algoritmo K-
Means, con el objetivo de establecer un esquema de
despacho que integre fuentes de generacion renovable
[13]. En este contexto, la generacion fotovoltaica (FV) se
incorpora exclusivamente durante la franja horaria
correspondiente a la condicion de carga “resto”, mientras
que la generacion edlica se considera constante a lo largo
de las tres bandas horarias. De esta manera, se configuran
escenarios de operacion que integran el despacho
econdmico de energias renovables, en funcién de la
capacidad disponible del sistema de prueba. En este
analisis, se consideraron los costos de generacion
fotovoltaica y edlica como nulos dentro del Optimal
Power Flow (OPF), permitiendo evaluar el despacho
econdmico del sistema bajo diferentes condiciones de
carga. La ubicacion de las plantas se definié con base en
el aprovechamiento de los recursos energéticos
disponibles. A partir de las coordenadas geograficas
aproximadas del sistema IEEE de 39 barras (localizado
en el noreste de EE. UU.) y mediante el uso de datos del
Global Solar Atlas y del Global Wind Atlas, se
identificaron las zonas con mayor potencial renovable.
Como resultado, se extendié el sistema original a 45
barras, situando la generacion renovable en las barras 32,
33 y 34 donde ya se tiene generacion convencional. En
este sentido, de acuerdo con las configuraciones tipicas
de parques renovables, se integro una capacidad total de
1200 MW, se incorporaron 600 MW solares mediante
tres plantas fotovoltaicas de 200 MW cada una, y 600
MW eodlicos a través de tres parques de igual capacidad
unitaria.

Para el analisis de estabilidad de corto plazo, las
fuentes renovables se modelaron como constantes debido
a que la ventana temporal de estudio es de apenas 5
segundos. Para considerar la incertidumbre y garantizar
la validez de los resultados, se realizdo un anélisis de
robustez variando la generacion renovable en un 10%. Al
reducir la inyeccion en este porcentaje, se verifico
mediante los modelos predictivos que la clasificacion del
estado de estabilidad (estable, ET o ETCP) mantuvo su
precision para los casos evaluados. Este resultado
confirma que la metodologia es robusta ante

incertidumbres de despacho renovable, aunque un
analisis mas profundo de la incertidumbre se plantea
como trabajo futuro. Por tltimo, la operacion del sistema
se configurd conforme a la Ley argentina 27.191, la cual
exige una penetracion minima de energias renovables
equivalente al 20% del consumo total. Los escenarios de
simulacion se disefiaron para evaluar condiciones de
operacion criticas, alcanzando para ello un nivel de
penetracion promedio del 20%.

3.1.2  Simulacion de contingencias N-1

Sobre cada escenario de operacion definido, se
llevaron a cabo simulaciones de contingencias de tipo N-
1, incluyendo la salida de unidades de generacion
convencional y cortocircuitos trifasicos en lineas de
transmision, con su posterior despeje a los 80 ms. Se
decidio no modelar la salida de centrales fotovoltaicas y
eblicas para preservar la condicion de maxima
penetracion renovable, permitiendo asi evaluar el mayor
impacto de estos recursos sobre la estabilidad del sistema
y poder evaluar el impacto de las FER en los mismos
escenarios de operacion y contingencias analizados sin
FER. El analisis detallado de la pérdida simultanea de
generacion renovable y sus efectos en la operacion del
sistema se plantea como una linea de investigacion para
trabajos futuros. Estos dos tipos de contingencias fueron
seleccionados por representar perturbaciones severas que
pueden comprometer la estabilidad del sistema eléctrico,
llegando incluso a provocar cortes parciales o totales del
suministro. Asimismo, se implementaron modelos
dinamicos para las plantas de generacion solar y edlica,
en todos los casos considerando estrategias de control de
tension. Las simulaciones se realizaron en un horizonte
temporal de 5 segundos, permitiendo capturar con
suficiente resolucion la evolucién dinamica de las
variables del sistema ante los fendmenos de inestabilidad
de corto plazo.

3.1.3  Seleccion de las variables de entrada

La correcta seleccion de variables eléctricas de
entrada es un aspecto crucial en el desempeiio de las
maquinas de aprendizaje. Esta seleccion debe
fundamentarse en la relacion existente entre dichas
variables y los fenomenos dindmicos que se pretenden
detectar, a fin de maximizar la capacidad predictiva del
modelo. Por ejemplo, el estudio presentado en [20] que
identifica generadores criticos ante inestabilidad
transitoria, las variables seleccionadas incluyen la
magnitud de tension, angulo de tension y angulo del rotor
(3) de los generadores sincronicos. Esta tltima variable
es representativa en la dindmica transitoria, ya que refleja
las oscilaciones del rotor frente a grandes perturbaciones,
constituyéndose en el principal indicador de pérdida de
sincronismo. Por otro lado, [2] se centra en la evaluacion
predictiva de la estabilidad de tension de corto plazo. En
este contexto, se incorpora la magnitud y angulo de la
tension de las barras, al igual que la velocidad de los
motores de induccion, siendo esta Oltima variable un
indicador sensible para capturar el fendmeno de la ETCP.
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En este sentido, en el presente trabajo se seleccionan
las siguientes variables de entrada: magnitud de tension
(IV]) angulo de tension (0), velocidad de los motores de
induccion (o) y angulo del rotor (8) de los generadores
sincronicos. Por lo tanto, las variables |V| y 6 se derivan
de las mediciones fasoriales sincronizadas por PMU,
mientras que o se calcula de forma indirecta empleando
la ecuacién dindmica del rotor, las mediciones de tension
y los parametros caracteristicos de los motores de
induccion [21]. Por tltimo, el angulo del rotor & se
obtiene a partir de las mediciones de fase de tension
sincronizadas por PMU, analogo al célculo realizado por
ciertas PMU avanzadas [22].

La extraccion de estas variables se realiza
selectivamente Unicamente en las barras donde se
encuentran los motores de induccion y en las barras que
contienen generadores convencionales o convencionales
y renovables. De este modo, se conforma un conjunto de
variables que permite abordar de forma simultanea y
eficiente la prediccion del estado de estabilidad de corto
plazo tanto transitoria como de tension. Cabe sefialar que
no se extraen variables directamente de las plantas FV y
edlicas, ya que su comportamiento operativo estd
intrinsecamente ligado a la respuesta dinamica observada
en las PMU de las barras de generacion donde estan
conectadas.

3.1.4  Etiquetado del estado de estabilidad

Como parte fundamental de la metodologia, una vez
definidas las variables de entrada del modelo de
aprendizaje profundo, es necesario establecer las salidas,
las cuales se determinan mediante la metodologia de
evaluacion definida en [9] y analizada en [13]. Dicha
metodologia se compone de dos etapas diferenciadas que
se muestran en la Fig. 4.

En la primera etapa, se realiza un ajuste de las
condiciones de simulacién, considerando tanto la
contingencia N-1 como el escenario de operacion
correspondiente. A partir de estas condiciones iniciales,
se ejecuta la simulacién dinamica en el dominio del
tiempo. Durante esta simulacién, se monitorea el
comportamiento del angulo del rotor de los generadores.
Si la maxima separacion angular entre cualquier
generador y el generador de referencia supera el limite
teorico de 180°, es decir, |A| § max > 180°, se considera
que uno o mas generadores han perdido el sincronismo.
Este fendmeno suele manifestarse también en forma de
oscilaciones de tension entre valores altos y bajos en
distintas barras del sistema, por lo que el caso se clasifica
como inestable. Por otro lado, si |A] § max < 180°, se
considera que el sistema permanece estable frente a la
perturbacion evaluada.

La segunda etapa tiene como objetivo identificar el
mecanismo principal de inestabilidad presente en
aquellos casos previamente clasificados como inestables.
Para ello, se realiza una nueva simulacidn en el dominio
del tiempo, esta vez ajustando el sistema para

desconectar la totalidad de la carga motorica. Si dicha
accion de control permite que el sistema recupere un
estado estable, se concluye que las cargas dinamicas
fueron las responsables del comportamiento inestable,
clasificando el caso como inestable por pérdida de
estabilidad de tension de corto plazo. En cambio, si la
desconexion de las cargas dinamicas no modifica la
condicion de inestabilidad, se interpreta que los
generadores sincronicos tienen mayor protagonismo en
el fendbmeno observado, por lo tanto, el caso se clasifica
como inestable por pérdida de estabilidad transitoria.

La informacion correspondiente al EECP, obtenida a
partir de esta metodologia, se codifica mediante el vector
c¢. Dicho vector esta estructurado en tres niveles, cada uno
de los cuales representa un posible estado del sistema:
estable, inestable por ET o inestable por ETCP. Es decir:

[1,0,0] Si EECP = estable
¢ =1[0,1,0] Si EECP = inestable por ET 1)
[0,0,1] Si EECP = inestable por ETCP
Esta informacion sobre la evaluacion del EECP que

contiene el vector c, es utilizada para el entrenamiento
del modelo RCNN-EE.

Primera Etapa Segunda Etapa

Ajuste de condiciones de
simulacion

Ajuste de condiciones de
simulacion

Desconexion de toda la carga
motorica en barras con mayor M1

Escenario de operacion

Contingencia n-1 : o
l Tiempo de accion de control

v

Flujo inicial de carga

Flujo inicial de carga

: !

Simulacién en el dominio del Simulacion en el dominio del
tiempo tiempo

[Ad|max > 180°
Estable

Figura 4: Diagrama de Flujo de la Metodologia de la EECP
3.2 Modelado RCNN-EE

N

Inestable

Inestable ET

’\_ ETCP

La arquitectura empleada en este estudio corresponde
a una combinacion de algoritmos de aprendizaje
profundo. Por un lado, se utilizan redes neuronales
convolucionales (CNN), cuya funcion principal es la
extraccion de caracteristicas espaciales. Por otro lado, se
integran redes neuronales recurrentes con memoria a
largo y corto plazo (LSTM), las cuales permiten capturar
caracteristicas temporales. La integracion secuencial de
ambas estructuras da lugar al modelo RCNN.

3.2.1  Procesamiento de datos

Antes de entrenar el modelo, los datos deben
organizarse en un formato estructurado que permita
capturar tanto la informacion espacial (por barra) como
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la temporal (evolucion en el tiempo) de las variables del
sistema. Para ello, se construye wun tensor
multidimensional, que es una estructura de datos
utilizada frecuentemente en aprendizaje profundo para
representar conjuntos de datos complejos [23].

El conjunto de datos utilizado corresponde a un tensor
de dimensiones (N,15,16,4), que representa series de
tiempo de 15 muestras para 16 barras del sistema con
carga dindmica y generacion, y 4 variables eléctricas. Los
datos se dividen en subconjuntos de entrenamiento y
prueba (80%-20%). Posteriormente, se aplica una
normalizacién global, calculando la media y desviacion
estandar sobre todas las muestras y barras del conjunto
de entrenamiento.

3.2.2  Entrenamiento

La arquitectura del modelo RCNN-EE se presenta en
la Fig. 5. En primer lugar, se encuentran las capas
convolucionales, seguidas de una capa densa (FC) que
relaciona las caracteristicas extraidas. Estas son luego
procesadas por las capas LSTM, y finalmente, una
segunda capa densa realiza la clasificacion del estado del
sistema como estable, inestable por ET o inestable por
ETCP.

" Estable
Entrada de
datos /'
=5 Tnestable
- » - por ET
™~ Inestable
por ETCP

Capas de convoluciin ¥ Capas LSTM FC

Figura S: Estructura del Algoritmo de Aprendizaje RCNN-EE

El modelo se entren utilizando la funcion de pérdida
categorica (categorical crossentropy), adecuada para
problemas de clasificacion multiclase con etiquetas
codificadas en formato one-hot. Como algoritmo de
optimizacion se empled Adam, ampliamente utilizado en
tareas de aprendizaje profundo por su eficiencia en la
convergencia. Durante el entrenamiento se incorporaron
mecanismos de regularizacion para evitar el sobreajuste.
En particular, se utilizo la técnica de Dropout en las capas
densas, desconectando aleatoriamente un porcentaje de
las neuronas en cada iteracion. Ademas, para abordar el
desbalance de clases, se aplicaron técnicas de
oversampling (sobremuestreo) y asignacion de pesos
especificos a cada clase en la funcion de pérdida, lo que
permitio mejorar la capacidad del modelo para identificar
con mayor precision los estados inestables.

3.3  Métricas de Desempeiio

Una vez finalizado el entrenamiento con el conjunto
de datos de entrenamiento, el modelo RCNN se evalia
utilizando el conjunto de prueba, a fin de medir su
capacidad de generalizacion. El desempefio se analiza
mediante la matriz de confusion y cuatro métricas
especificas.

e Accuracy (ACC): Exactitud global.
e Correct Unstable (CU): Proporcion de
inestables correctamente identificados.

o Stable Sensitivity (SS): Sensibilidad para la
clase estable.
e G-Mean: Media geométrica entre CU y SS.

3.4  Aplicacion del Modelo RCNN-EE en Tiempo
Real

La finalidad de este estudio es que el modelo de
aprendizaje profundo desarrollado pueda ser aplicado en
tiempo real, permitiendo asi una evaluacion oportuna del
estado de estabilidad del sistema eléctrico. Esta
capacidad de prediccion en linea resulta fundamental
para sistemas de proteccion y control, ya que posibilita la
toma de decisiones correctivas de manera anticipada ante
eventos que comprometan la estabilidad del sistema.

4. ANALISIS DE RESULTADOS

En este capitulo se presentan los resultados obtenidos
a partir de la implementacion de la metodologia
propuesta en [9] considerando sistemas con alta
penetracion de generacion basada en fuentes de energia
renovable (FER).

4.1 Caso de Estudio

El caso de estudio corresponde al sistema IEEE New
England de 39 barras, el cual fue modificado para incluir
600 MW de generacion edlica y 600 MW de generacion
fotovoltaica. Las nuevas plantas renovables se
conectaron en las barras 32, 33 y 34, seleccionadas por
su alto recurso primario (irradiancia y velocidad de
viento), ver Fig. 6. El modelo de generacion renovable
utilizado fue del tipo 4 disponible en la libreria de
PowerFactory y operando bajo un modo de control de
tension local (modo 3). En el estudio se analizaron 9883
escenarios operativos con simulaciones dinamicas de
contingencias N-1, que incluyen pérdidas de generacion
y cortocircuitos trifasicos. La base de datos dinamica se
generd mediante scripts DPL en PowerFactory, mientras
que los datos estaticos y el OPF se resolvieron en Python
empleando PYPOWER. Los escenarios se agruparon en
las tres bandas horarias usando clustering con K-Means,
considerando que la generacion edlica opera en todas las
franjas, mientras que la FV solo en la banda resto. Cada
caso fue posteriormente clasificado en una de las tres
clases de estabilidad: estable, inestable por pérdida de
sincronismo (ET) o inestable por colapso de tension
(ETCP), conformando asi una base de datos etiquetada
apta para entrenamiento y validacion del modelo
predictivo.

Finalmente, esta base de datos etiquetada permite
evaluar la capacidad del modelo RCNN-EE, entrenado
sin FER, para predecir adecuadamente en escenarios que
las incluyen. En caso de que los resultados no sean
satisfactorios, dicha base sirve también para entrenar una
nueva RCNN-EE adaptada a la nueva composicion del
parque de generacion.
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Figura 6: Sistema New England 39 Barras con Penetracién de
Energias Renovables

4.2 Evaluacion del Clasificador RCNN-EE

Entrenado sin FER

En esta seccion se analiza el modelo RCNN-EE
entrenado en [9]. Para ello, se utilizd la nueva base de
datos generada a partir de la metodologia explicada
anteriormente, que incorpora integracion de generacion
renovable (edlica y solar). La Tabla 1 resume los
resultados de clasificacion obtenidos por el modelo
RCNN-EE de [9] frente a la aplicacion de la metodologia
de etiquetado en la base de datos del sistema con FER
[13]

Tabla 1: Comparacién de Clasificacion RCNN-EE vs Etiquetado
en Sistema con FER

RCNN-EE
Tipo Metodologia de
EECP | Entrenadoen | etiquetado con FER
[9] sin FER
Estables 6888 7930
ET 2477 1529
ETCP 518 424
Total 9883 9883

A partir de los resultados de la Tabla 1, se observa
una discrepancia considerable, especialmente en la clase
"Estables", donde el modelo subestima la cantidad de
casos estables y sobreestima los casos inestables. Esto
indica que el modelo RCNN-EE, al haber sido entrenado
con una topologia de red distinta y sin considerar
generacion renovable, pierde capacidad predictiva ante
nuevos escenarios con alta penetracion renovable. Este
andlisis justifica la necesidad de reentrenar el modelo
utilizando la nueva base de datos.

4.3  Entrenamiento y Disefio de Modelos

En este apartado se describe brevemente el disefio de
las maquinas de aprendizaje profundo utilizados, asi
como el proceso de entrenamiento aplicado.

4.3.1 Diseiio del modelo

El modelo de aprendizaje profundo consta de un
modulo CNN con tres capas convolucionales (64, 32 y 4
filtros de tamafio 3x3) con funcion de activacion ReLU,
seguidas de max pooling 2x2, normalizacion por lotes y
dropout 0.1 para evitar sobreajuste. El resultado se aplana
(flatten) y pasa a 32 neuronas FC (ReLU). Luego, la
salida alimenta un modulo LSTM de 64 neuronas, con
funcion de activacion tanh y normalizacion por capas,
encargado de procesar las dependencias temporales.
Finalmente, las caracteristicas extraidas atraviesan una
FC de 64 neuronas (ReLU) y un clasificador softmax de
3 salidas, que entrega la probabilidad de pertenencia a
cada clase de estabilidad. Para una mejor apreciacion se
presenta la Fig. 7.

Durante el entrenamiento se ajustaron los
hiperparametros mas relevantes, como la tasa de
aprendizaje (1x1073), el tamafio de lote (256), el nimero
de épocas (600). Se empled la funcion de pérdida
categorical cross-entropy y el optimizador Adam.

Cony Cony Cony
64,3x3 32,3x3 433 FC,32
ReLU ReLU ReLU ReLU
MaxPaal MaxPool MaxPool FC,3
w2 22 22
Softmax
Batch Batch Batch

Capas FC

Capas FCy

Capas convolucionales
P: clasifieador

Capas LSTM

Figura 7: Arquitectura del Modelo RCNN-EE

Ademas, se aplicaron pesos de clase para compensar
el desbalance del conjunto de datos original, el cual
presentaba una marcada minoria de escenarios de
inestabilidad de tension de corto plazo (424 casos de
ETCP sobre un total de 9883). Para mejorar el
entrenamiento del modelo, se realizO un proceso de
oversampling mediante la duplicacion de dichos casos de
ETCP, resultando en un conjunto de datos final de 10307
casos. Sobre este conjunto, se determinaron los pesos de
penalizacion segln la Ec. (2).

- (@)
a} B kn]

Donde q; es el paso de la clase j, n es el nimero total
de casos de estudio (10307), n; es el nimero de casos de
estudio de la clase j (estable: 7930, inestable por ET:
1529, inestable por ETCP: 848), y k es el nimero de
clases que en este caso es 3. Por lo tanto, se obtuvo el
vector de balance o =[0.43, 2.25, 4].

Con el objetivo de evaluar el impacto del desbalance
de clases en el rendimiento del modelo, se realizaron
multiples analisis variando los pesos de clase (o), tal
como se muestra en la Fig. 8. Se observa que asignar
pesos proporcionales a la cantidad real de muestras por
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clase mejora el desempefio en métricas sensibles al
desbalance, especialmente el CU y el G-mean, lo que
indica una mejor capacidad del modelo para detectar los
casos inestables sin sacrificar el rendimiento general.

CU (%)

ACC (%) SS (%)
Figura 8: Métricas de Desempeiio Considerando Diferentes
Vectores de Pesos de Balance

100.000
98.000

96.000
mg=[1.1.1]
94.000 g =[0.43, 2.25, 4]
a=[1.5,10]
92.000
mo =1, 10. 15]

90.000 ma=[1.15,20]

88.000

86.000
Gmean (%)

4.3.2  Resultados del entrenamiento

Durante el proceso de entrenamiento, se registraron
las curvas de pérdida y precision tanto en el conjunto de
entrenamiento como en el de validacion (reservando un
20 % de los datos de entrenamiento para este ultimo). La
Fig. 9 muestra la evolucion de la funcion de pérdida,
donde se observa una disminucion progresiva y estable
hasta alcanzar valores bajos, lo que indica una buena
convergencia del modelo sin evidencia de sobreajuste.
Por su parte, la Fig. 10 presenta la evolucion de la
precision, evidenciando un incremento sostenido hasta
estabilizarse cerca del 97% para ambos conjuntos.

10 10
— Pérdida Entrenamianto

— Pérdida Validacién

— Precisidn Entrenamiento
00 Precisian Valldscion

5 wo om0 a0 s et
Epocas
Figura 9: Evolucién de la
Pérdida Durante el
Entrenamiento

Figura 10: Evolucién de la
Precision Durante el
Entrenamiento

4.4  Resultados del Desempefio

El desempeiio del modelo RCNN-EE se evalud
mediante matrices de confusion para los conjuntos de
entrenamiento y prueba, como se muestra en la Tabla 2.
Los wvalores en la diagonal principal indican
clasificaciones correctas (verdaderos positivos) para cada
clase. Los valores fuera de la diagonal corresponden a
errores de clasificacion (falsos positivos o falsos
negativos), que permiten calcular las métricas de
desempeitio de la Tabla 3.

Tabla 2: Matrices de Confusién tanto para los Datos de
Entrenamiento como para los de Prueba

Datos entrenamiento

Real \ Prediccion Estable Ine]sat;ble Ing;tgl}))le
Estable 6099 1 232
Inestable ET 2 1212 16
Inestable ETCP 0 0 683

Datos de prueba
Real \ Prediccion Estable ET ETCP

Estable 1530 1 67
Inestable ET 1 286 12
Inestable ETCP 0 0 165

En cuanto a las métricas de desempefio, se resumen
en la Tabla 3. Estas métricas reflejan un rendimiento
adecuado del modelo de aprendizaje, manteniendo altos
niveles de precision y confiabilidad tanto en el conjunto
de entrenamiento como en el de prueba. En particular, la
métrica G-mean demuestra un buen desempeifio global,
especialmente en contextos con clases desbalanceadas.

Tabla 3: Métricas de Desempeiio

Métrica en trDe Eg::ncil:n to Datos de prueba
Precision (ACC) [%] 96.96 96.07
Sensibilidad (SS) [%] 96.71 95.78
Confiabilidad (CU) [%] 99.71 99.40
G-mean [%)] 98.20 97.57
4.5 Comparacion con Otros Modelos Deep

Learning

Con el objetivo de confirmar un mejor desempefio de
la RCNN-EE entrenada, en la Fig. 11 se presenta una
comparacion del comportamiento de la pérdida para los
modelos LSTM, CNN y RCNN-EE. Se evidencia que el
modelo propuesto (RCNN-EE) presenta una menor
pérdida durante todo el entrenamiento, lo que se ve
reflejado también en las métricas globales de rendimiento
dispuestas en la Tabla 4.

Estos resultados permiten concluir que la arquitectura
hibrida RCNN-EE supera a los modelos tradicionales
CNN y LSTM, tanto en precision como en métricas
complementarias evaluadas sobre el conjunto de datos de
prueba. Esto valida su capacidad de generalizacion para
la tarea de clasificacion del estado de estabilidad del
sistema eléctrico ante escenarios no vistos durante el
entrenamiento.
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Figura 11: Comparacién con Otras Maquinas de Aprendizaje

Tabla 4: Comparacién con Otros Modelos Deep Learning

Método | ACC (%) | SS (%) | CU (%) | G-mean (%)
LSTM 91.80 | 9129 | 97.60 94.40
CNN 9195 | 9135 | 98.80 95.00
RCNN-EE | 9607 | 9575 | 99.40 97.57

4.6  Aplicacion de la RCNN en Tiempo Real

La aplicacion en tiempo real del modelo RCNN-EE
requiere que la informacion proveniente de las PMU sea
procesada de modo que el modelo entrenado pueda
interpretar correctamente las sefiales y clasificar el estado
del sistema. En este contexto, el modelo RCNN-EE debe
predecir el estado de inestabilidad con la anticipacion
suficiente para decidir y ejercer una accion de control
correctivo o de emergencia que evite la pérdida de
estabilidad. En este sentido, se evaluaron y calcularon los
tiempos asociados a la metodologia para la prediccion del
estado de estabilidad. La ventana de datos analizada, de
140 ms, abarca la falla y la condicion post falla. Los
retardos de adquisicion y transmision de datos son de 100
ms. El tiempo requerido para el preprocesamiento de
datos fue de 1,3 ms, mientras que el proceso de
clasificacion tomo aproximadamente 48,2 ms. Es
importante destacar que estos tiempos de calculo
dependen en gran medida de las capacidades del equipo
en el cual se ejecutd el modelo; por lo tanto, utilizando
una maquina mas moderna y con mayor capacidad de
procesamiento, es posible reducirlos significativamente,
tal como se ha demostrado en la referencia [9]. El tiempo
total acumulado para la prediccion, considerando los
tiempos expuestos en la Fig. 12, se establece en 289,5 ms
desde el inicio de la falla hasta la finalizacion de la
prediccion. Este valor es significativamente inferior al
intervalo en que tipicamente se desarrollan las
inestabilidades de corto plazo, lo que permite que, una
vez identificada la condicidon de inestabilidad, se tome
oportunamente una decisién de control de emergencia.
Entre estas acciones se destacan, por ejemplo, la
desconexion selectiva de generadores ante fendmenos de
inestabilidad transitoria o la desconexién de cargas
dinamicas criticas frente a escenarios de colapso de
tension, mitigando asi la pérdida de estabilidad del
sistema.

10

Evaluacion del RCNN

Preprocesamiento de datos

Longitud de ventana RCNN 140 ms

Falla

Figura 12: Linea de Tiempo para la Aplicacién en Tiempo Real
del Modelo de Aprendizaje

5. CONCLUSIONES Y RECOMENDACIONES

La integracion de generacion renovable impacta
significativamente la dinamica del sistema eléctrico,
aumentando la complejidad en la evaluacion de la
estabilidad de corto plazo y exigiendo metodologias
predictivas que consideren en estos escenarios tanto la
estabilidad transitoria como la de tension de manera
conjunta.

El modelo hibrido RCNN-EE entrenado demuestra
un alto desempefio predictivo (ACC: 96.07 %, G-mean:
97.57 %), superando a arquitecturas convencionales de
aprendizaje profundo como CNN y LSTM, y mostrando
una capacidad robusta para discriminar entre estados
estables e inestables ante perturbaciones severas.

El modelo hibrido implementado permite una
evaluacion en tiempo real con tiempos menores a 400 ms,
lo que, valida su aplicabilidad en sistemas de proteccion
y control del sistema eléctrico, permitiendo la toma de
decisiones de emergencia durante la operacion en tiempo
real de los sistemas de potencia.

Se evidencid que los clasificadores entrenados
exclusivamente con topologias de generacion
convencional pierden capacidad predictiva ante la
inclusion de fuentes renovables. Dado que la dindmica
del sistema se ve alterada por el desplazamiento de la
generacion sincronica, el uso de modelos sin actualizar
bajo estas nuevas condiciones operativas compromete la
confiabilidad de la evaluacion en tiempo real.

TRABAJOS FUTUROS

Como trabajo futuro, se propone profundizar en el
impacto de la incertidumbre asociada a la variabilidad
estocastica de los recursos renovables. Asimismo, se
plantea ampliar el alcance del estudio hacia la estabilidad
impulsada por convertidores, analizando especificamente
las interacciones de control de alta frecuencia y los
fendmenos de interaccion rapida. También se contempla
la evaluacion de escenarios de contingencia mas
complejos, como la pérdida simultdnea de grandes
bloques de generacion renovable y sus efectos en la
dinamica del sistema. Finalmente, se buscard optimizar
la implementacion del modelo RCNN-EE en hardware de
mayor capacidad para reducir los tiempos de
procesamiento, fortaleciendo asi su integracion en
esquemas de control de emergencia en tiempo real.
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