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Abstract

The massive integration of renewable energy sources,
such as wind and photovoltaic power, has altered the
dynamics of Power Systems (PS), reduced rotational
inertia and affected transient stability. To address this
challenge, this work applies to an Adaptive Generation
Tripping Scheme (AGTS) based on deep learning and
PMU measurements to adaptively identify and
disconnect in real time the critical generators
responsible for instability in a system with high
renewable energy penetration.

The proposed methodology employs a dynamic
database encompassing various operational scenarios
and n-1 contingencies to train a hybrid Recurrent
Convolutional Neural Network (RCNN) that identifies
the generators whose disconnection allows the system
to recover stability. The results demonstrate that the
model enables the recovery of transient stability with
minimal disconnection of conventional generation and
response times below 0.5 s, achieving accuracy and
effectiveness above 97%, thus confirming its potential
for real-time application in systems with high renewable
penetration.

Index terms— Renewable energy, Transient stability,
Deep learning, Adaptive tripping scheme, PMU.
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Resumen

La integracion masiva de fuentes de energias
renovables, como la edlica y la fotovoltaica, ha
modificado la dinamica de los Sistemas Eléctricos de
Potencia (SEP), reduciendo la inercia rotacional y
afectando la estabilidad transitoria. Ante este desafio, en
este trabajo se aplica el Esquema Adaptativo de
Desconexion de Generacion (EADG) basado en
aprendizaje profundo y mediciones PMU para
identificar de forma adaptable y desconectar en tiempo
real los generadores criticos responsables de la
inestabilidad en un sistema con alta penetracion de
generacion basada en fuentes de energia renovable.

La metodologia aplicada utiliza una base de datos
dindmica con distintos escenarios operativos 'y
contingencias n-1, para entrenar una red neuronal
hibrida RCNN que identifica los generadores cuya
desconexion permite recuperar la estabilidad del
sistema. Los resultados demuestran que el modelo
permite la recuperacion de estabilidad transitoria con
una desconexion minima de generacién convencional y
tiempos de respuesta inferiores a 0.5 s, demostrando su
precision y efectividad, mayores al 97%, y aplicabilidad
en tiempo real en sistemas con alta penetracion
renovable.

Palabras clave— Energias renovables, Estabilidad
transitoria, Aprendizaje profundo, Esquema Adaptable
de desconexion de generacion, PMU.
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1. INTRODUCCION

El objetivo global de descarbonizar la matriz
energética ha impulsado la incorporacion masiva de
fuentes de energia renovable (FER) en los Sistemas
Eléctricos de Potencia (SEP). Los avances tecnoldgicos
y las politicas de sostenibilidad han favorecido su
expansion, aunque esta transicion introduce nuevos
desafios operativos al reducir la inercia y comprometer la
estabilidad del sistema [1].

La disminucion de inercia afecta directamente la
estabilidad transitoria (ET), limitando la capacidad del
sistema para reaccionar ante perturbaciones severas
dentro de tiempos adecuados para una accion de control
efectiva [2]. En este contexto, se requiere el desarrollo de
metodologias mas rapidas de evaluacion y respuesta.

Los métodos tradicionales de andlisis paso a paso son
ineficientes para su aplicacion en tiempo real por su alta
demanda computacional [3], [4]. Los métodos directos,
aunque mas rapidos, presentan limitaciones al no
considerar modelos  dinamicos  detallados  [3].
Actualmente, las Unidades de Medicion Sincrofasorial
(PMU) permiten evaluar la estabilidad en tiempo real
mediante mineria de datos y aprendizaje profundo [3],

[4].

Sin embargo, la mayoria de estas metodologias
fueron desarrolladas bajo paradigmas de generacion
convencional, reduciendo su eficacia en sistemas con alta
penetracion renovable. En [5], se analizé el impacto de
las FER en la estabilidad de tension de corto plazo
(ETCP) y la ET, concluyendo que la mayor presencia
renovable incrementa los casos de inestabilidad
transitoria debido a la pérdida de inercia.

Este trabajo toma como base los escenarios de [5],
focalizandose en los casos inestables transitorios. Sobre
ellos se aplica la metodologia de identificacion de
generadores criticos propuesta en [4], adaptandola a
sistemas con alta penetracion renovable para
implementar un Esquema Adaptativo de Desconexion de
Generacion (EADG).

El documento se organiza en cinco capitulos: el
Capitulo 2 aborda los fundamentos teodricos y
herramientas empleadas; el Capitulo 3, la metodologia
aplicada; el Capitulo 4, los resultados obtenidos; y el
Capitulo 5, las conclusiones del estudio.

2. MARCO TEORICO

Para poner en contexto la presente investigacion, se
presenta una serie de conceptos sobre estabilidad
transitoria y herramientas necesarias para aplicar la
metodologia propuesta en [4] a sistemas con alta

penetracion de generacion basada en FER.
2.1  Estabilidad Transitoria

La ET se define como la capacidad del sistema
eléctrico para mantener el sincronismo tras una
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perturbacion severa. Esta condicion depende de la
habilidad de los generadores sincronos (SG) para
restablecer el equilibrio entre el par mecéanico Tm
suministrado por la turbina y el par electromagnético 7_"6
producido por la maquina [6].

El angulo del rotor constituye la variable principal
para analizar este fenomeno, ya que refleja directamente
las oscilaciones del generador durante y después de una
falla. Dicho comportamiento se describe mediante la
ecuacion del movimiento rotacional (ecuacion 1):

2Hd*§
W, dt?

m—

(M

Donde H es la constante de inercia, w, la velocidad
angular nominal y § el angulo del rotor respecto al ¢je
sincrono.

Cuando este equilibrio se pierde, el angulo del rotor
aumenta progresivamente, lo que puede conducir a la
pérdida de sincronismo del generador con el resto del
sistema. Este fenomeno caracteriza la inestabilidad
transitoria, manifestada por una divergencia del angulo
rotorico.

Como medida de emergencia, se aplican esquemas de
desconexion automatica de generacion (DAG) o el
Esquema Adaptativo de Desconexion de Generacion
(EADG) propuesto en [4], con el objetivo de preservar la
estabilidad global del sistema y mitigar el impacto de la
falla [7].

2.2 Modelos Dindmicos de Fuentes de Energia

Renovable (FER)

El creciente uso de fuentes de energia renovable,
especialmente eolica y fotovoltaica ha introducido
nuevos desafios para la estabilidad de los sistemas
eléctricos de potencia. Con el fin de analizar su
comportamiento dinamico frente a contingencias, se¢
emplean los modelos desarrollados por el EPRI y
posteriormente validados y estandarizados por el WECC,
los cuales estan implementados en plataformas de
simulacion como PowerFactory, ampliamente utilizadas
en estudios de estabilidad [8].

Dado que la respuesta dinamica de estas fuentes
influye directamente en la estabilidad del sistema, su
modelado detallado resulta esencial. En los estudios de
flujo de carga, las plantas renovables se representan
como generadores conectados mediante transformadores
capaces de inyectar potencia activa y reactiva de forma
controlada, lo que permite mantener la tension del
sistema cuando operan con factor de potencia constante

[9].
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Figura 1: Representacién Esquemitica de un Generador Eolico
Tipo 4 Conectado a Red. Fuente: [10]

En los analisis dindmicos, los generadores renovables
tipo 4, mostrados en la Figura 1, se modelan como
sistemas totalmente desacoplados de la red mediante
convertidores electrénicos de potencia. Segtn [10], estos
modelos de Recursos Basados en Inversores (IBR) se
fundamentan primordialmente en un control de corriente
de lazo interno rapido (fast inner-loop current control).

Es importante precisar que, si bien la literatura
distingue entre tecnologias seguidoras de red (Grid-
Following - GFL) y formadoras de red (Grid-Forming -
GFM), el nombre de un modelo genérico por si solo no
determina su categoria. El presente estudio se centra en
el desempefio de inversores bajo una configuraciéon que,
si bien es compatible con servicios auxiliares de
frecuencia y tension, opera primordialmente bajo la
premisa de seguimiento de red (Grid-Following - GFL).

No obstante, se reconoce que la arquitectura de estos
modelos genéricos permite, mediante ajustes especificos,
representar comportamientos de formacion de red (Grid-
Forming - GFM), asegurando la estabilidad global del
sistema ante perturbaciones.

2.3  Esquemas de Proteccion Especial

Los Esquemas de Proteccion Especial (SPE)
constituyen una estrategia avanzada dentro de los
sistemas eléctricos de potencia, diseflada para preservar
la estabilidad del sistema ante condiciones anormales.
Estos esquemas ejecutan acciones de control predefinidas
tras la ocurrencia de una contingencia, basandose en
simulaciones fuera de linea que consideran la seguridad
estatica y dinamica del sistema [3].

A diferencia de las protecciones convencionales, que
actian de forma local e independiente, los SPE operan de
manera coordinada a nivel sistémico, integrando
multiples sefiales y dispositivos con el fin de evitar
colapsos de tension, frecuencia o pérdida de sincronismo.
Su implementacion permite mantener la integridad
operativa frente a perturbaciones severas.

Segun el tipo de variable que desencadena su
actuacion, los SPE pueden clasificarse en dos grupos:

e Basados en eventos, que se activan ante la
deteccion de una contingencia especifica o una
combinacion de fallas predefinidas.

Basados en respuesta, que actllan al detectar

cambios en variables eléctricas medibles, como
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la tension o la frecuencia, una vez que el sistema
ha comenzado a desviarse de su condicion
estable [4].

En [4], la EADG se plantea como un esquema de
proteccion especial adaptativo capaz de identificar
generadores criticos responsables de la pérdida de
estabilidad transitoria. A diferencia de los SPE
tradicionales, basados en escenarios predefinidos, el
esquema propuesto utiliza técnicas de aprendizaje
profundo (DL) mediante una red neuronal convolucional
recurrente (RCNN) entrenada con una amplia base de
datos que abarca numerosas y muy diversas condiciones
operativas y contingencias. De esta manera, el EADG
aprende directamente de la dinamica del sistema a partir
de mediciones PMU, permitiendo una decision basada en
respuesta mas rapida, precisa y generalizable ante
disturbios severos [4].

2.4  Deep Learning

La Inteligencia Artificial (IA) abarca técnicas
orientadas a la extraccion de conocimiento a partir de
datos, donde el Aprendizaje Automatico (ML) constituye
su base y el DL una extension que utiliza multiples capas
no lineales para extraer y transformar caracteristicas
automaticamente [11], [12].

El DL ha mostrado alto rendimiento en aplicaciones
eléctricas como el pronodstico edlico, la prediccion de
carga critica y la mitigacion de inestabilidades de tension
[13], [14]. Si bien existen distintos modelos de DL, la
implementacion de estructuras hibridas mejora el
desempeiio al combinar las fortalezas de diferentes
arquitecturas [14]. En este trabajo se utiliza el modelo
hibrido CNN-LSTM propuesto en [4] y [14], que integra
la deteccion de patrones espaciales de las CNN con la
capacidad de las LSTM para capturar dependencias
temporales.

La integracion de ambas arquitecturas conforma la
Red Neuronal Convolucional Recurrente (RCNN), capaz
de extraer simultaneamente las caracteristicas espaciales
y temporales de las sefales del sistema eléctrico,
mejorando asi la precision y robustez del proceso de
clasificacion.

Power system

Time seriesin |
“image format™ |

Time series
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En la Figura 2 se presenta la arquitectura del modelo
RCNN donde recibe como entrada series de tiempo
medidas por unidades PMU, que representan variables
del sistema eléctrico durante la falla y en los instantes
posteriores a su despeje. Estas series son transformadas
en tensores de datos, los cuales se procesan de forma
secuencial a través de capas convolucionales, LSTM y
capas de conexion completa (FC), para finalmente
realizar la clasificacion de generadores criticos.

3. METODOLOGIA DE DESCONEXION
AUTOMATICA DE GENERADORES

La metodologia de identificacion de generadores
criticos adoptada en este trabajo se basa en la propuesta
de [4], estructurada en cuatro etapas principales:
construccion de la base de datos, seleccion de variables
representativas, etiquetado de generadores criticos y
entrenamiento del modelo hibrido RCNN.

En este estudio, se amplia la metodologia al
incorporar FER en el sistema de prueba, generando una
nueva base de datos dinamica que incluye escenarios
operativos con generacion edlica y fotovoltaica.

31 Bases de Datos

La generacion de una base de datos adecuada
constituye un paso fundamental en metodologias basadas
en aprendizaje profundo, ya que el desempeiio del
modelo depende directamente de la representatividad y
diversidad de los datos empleados. En este estudio, la
base de datos se desarrolla en dos etapas
complementarias: estatica y dindmica.

En la primera etapa se realiza el célculo del flujo
optimo de potencia (OPF) considerando la integracion de
fuentes de energia renovable (FER) en diferentes
escenarios operativos. Este procedimiento permite
definir el despacho de generacion convencional y
renovable, reflejando la reduccion de la inercia rotacional
asociada a la sustitucion de unidades sincronas por
generacion eolica y fotovoltaica.

En la segunda ctapa se generan series de tiempo
mediante simulaciones de transitorios electromecanicos,
manteniendo constantes los escenarios de carga y la
topologia del sistema, pero modificando el despacho de
generacion para incluir FER. Estas simulaciones
permiten caracterizar la respuesta dinamica del sistema
ante distintas contingencias N-1, como cortocircuitos
trifasicos y salidas de generacion.

La modelacion de las plantas renovables se basa en el
modelo dinamico Tipo 4, que representa el
comportamiento del convertidor mediante bloques
funcionales (Figura 3) y control directo de tension. El
etiquetado de los escenarios de estabilidad (estable,
inestable por ET o ETCP) sigue la metodologia descrita
en [15], basada en la observacion de la pérdida de
sincronismo y la respuesta del sistema tras las acciones
de control.
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Figura 3: Diagrama de Bloques Funcionales del Modelo Dinamico
Tipo 4. Fuente: [16]

Seleccion de Variables de Entrada al Modelo
RCNN

Los datos de entrada del modelo RCNN para la
identificacion de generadores criticos se conforman por
series de tiempo de variables eléctricas y mecanicas
representativas del comportamiento dinamico del
sistema. Estas variables deben ser capaces de reflejar con
claridad los fenémenos asociados a la pérdida de
sincronismo dentro de una ventana temporal reducida y
provenir de mediciones o estimaciones obtenidas
mediante PMU, lo que permite su implementacion en
tiempo real.

3.2

En este estudio se emplean cuatro variables: magnitud
y angulo de tension (U, 6), angulo del rotor (3) y
velocidad angular equivalente (w). Todas ellas se
registran en barras con unidades generadoras y cargas
dinamicas, lo que permite obtener informacion sobre la
dinamica de los fenomenos que se desarrollan en el corto
plazo.

De acuerdo con [14] y [4], estas variables han
demostrado ser adecuadas para caracterizar tanto la
estabilidad de tension de corto plazo como la estabilidad
transitoria. Asi, el modelo RCNN utiliza como entradas
sefiales directamente medibles por PMU, sin requerir
informacion explicita sobre la topologia del sistema o el
tipo y localizacion de la contingencia. Dichos aspectos se
encuentran implicitos en la base de datos dinamica
generada a partir de simulaciones, la cual debe
actualizarse y reentrenarse ante cambios en la red o en el
parque de generacion.

3.3 Identificacion de Generadores Criticos

Con la finalidad de etiquetar a los generadores que
son criticos, en todos los casos de la base de datos
clasificados como ET utilizando [14] y [15], para usarlo
como salida en el entrenamiento del modelo hibrido
RCNN, es necesario primero determinar a través de un
ranking de desconexion y simulaciones dindmicas las
plantas que al ser desconectadas son responsables de la
pérdida de estabilidad del sistema. Para ello se aplica la
propuesta de [4]:

3.3.1  Ranking de desconexion

El proceso inicial para formar el etiquetado de
generadores  criticos consiste en elaborar una
clasificacion de desconexion evaluando en el tiempo a los
generadores que alcanzan el limite tedrico de estabilidad
+180° [17].
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El tiempo en el que alcanza dicho valor permite
establecer el orden de pérdida de sincronismo, generando
asi un ranking temporal de las unidades mas susceptibles
a la inestabilidad.

Para ejemplificar el procedimiento de construccion
del ranking de desconexion se muestra en la Figura 4 la
evolucion del angulo del rotor de los generadores
sincronicos en un escenario con problemas por ET por
falla trifasica en una linea de transmision en el sistema
IEEE New England de 39 barras.

En la Figura 4 se observa que el primer generador en
perder sincronismo es el GO7, en celeste,
aproximadamente a los 850 ms, luego cien milisegundos
mas tarde, lo hace G06, en verde, y asi sucesivamente. A
partir de estos resultados se construye el ranking de
desconexion de la Tabla 3.1.

6 7] e 07 ] e G380 can )

W 01 02 03 o4 05 06 07 0F @8 1 11 12

Figura 4: Evolucién en el Tiempo del Angulo de Rotor del

Generador Sincroénico (caso 770)

Tabla 3.1: Ranking de Desconexion (Caso 770)

Ranking 1° 2° 3° 4° 5° 6° 7°
Gen G36 | G35 | G33 | G34 | G38 | G37 | G30
3.3.2  Etiquetado de generadores criticos

Una vez establecido el ranking de desconexion (Tabla
3.1), este conjunto de generadores se emplea en una
segunda etapa, donde se ejecutan nuevas simulaciones
dinamicas aplicando la desconexién acumulativa en el
mismo orden en que las maquinas perdieron sincronismo.

Después de cada desconexion, se evalua si la accion
de control restaura la estabilidad del sistema. Caso
contrario, se continila con la desconexion progresiva
seglin el ranking hasta alcanzar un estado estable.

Los generadores cuya desconexion permite recuperar
la estabilidad se etiquetan como criticos.

Para ilustrar esto, la Figura 5 muestra la evolucion del
angulo del rotor de los generadores tras aplicar la
desconexion del generador GO7, primero en el ranking.
Se observa que, una vez ejecutada la accion de control, el
sistema recupera la estabilidad y los angulos del rotor
tienden a estabilizarse. Por tanto, GO7 se clasifica como
el unico generador critico, ya que, para este estado
operativo y contingencia, su desconexion logra
restablecer la estabilidad y evitar la propagacion de la
inestabilidad en el sistema.

17

3007 e 7 O8] 38 18

@

200
D 01 oz 03 o4 05 08 O7 08 08 1 11 12 13 14 15 18 17 18 18 2

Figura 5: Mitigacién de la Inestaii;;iidad Mediante la Desconexion
del Generador G36 Segun el Ranking

Aqui la metodologia propuesta adquiere especial
relevancia al incorporar un ranking de desconexion que
permite priorizar las unidades generadoras mas
influyentes en la pérdida de estabilidad. Este enfoque
posibilita una accién mas selectiva y eficiente, evitando
desconexiones innecesarias y preservando la mayor
cantidad posible de generacion en servicio, lo que
optimiza la respuesta del sistema ante contingencias
severas.

34 Modelo RCNN

3.4.1  Preprocesamiento de datos

Antes del entrenamiento, los datos se transforman a
un formato compatible con las capas iniciales del
modelo, en especial las convolucionales, representandose
como un tensor tridimensional cuyos ejes corresponden
al mimero de barras (B), muestras temporales (T) y
variables eléctricas seleccionadas. En las barras donde no
existen generadores o motores, los valores
correspondientes al angulo del rotor y a la velocidad
angular se completan con un valor de 1 pu, a fin de
mantener la dimensionalidad y consistencia de las series
temporales utilizadas en ¢l entrenamiento del modelo.

El ¢je T define las muestras dentro de una ventana
temporal de 140 ms, suficiente para captar la dindmica
inmediatamente posterior a la contingencia. El eje B
representa las barras con generacion y cargas dinamicas,
mientras que el tercer eje agrupa las cuatro variables:
magnitud y angulo de tension (U, 8), angulo del rotor (3)
y velocidad (®), de modo que el tensor de entrada se
define como (U, 8, 3, ®) € RN(TxBx4),

En los casos estables o inestables ETCP todos los
generadores se etiquetan con valor cero, dado que en
estos casos no se presentan generadores criticos.
Finalmente, se aplica una normalizacién z-score,
ajustando las variables a media cero y varianza unitaria
para unificar sus escalas [14].

3.5  Métricas de desempeiio

Dado que el modelo de aprendizaje predice conjuntos
de generadores criticos, la métrica de evaluacion del
rendimiento se fundamenta en la similitud entre
conjuntos.

Para ello, se emplea el Indice de Jaccard, que
cuantifica el grado de similitud entre dos conjuntos de




Edicion No. 22, Issue II, Enero 2026

elementos [4], segun la ecuacion (2).
|S:n S|
MEINEINTAM]

Donde ] € [0,1]y ] (S;, Sj) = 1.

J(5.S) = 2

Para este caso la clasificacion es considerada correcta
cuando J (G, ,G.) = 1, siendo G, el conjunto predicho por
la maquina y G, el conjunto de valores verdaderos.

En este trabajo se utilizan las tres métricas basadas en
el indice Jaccard definidas en [4] y [14]:

El indice de Precision Jaccard (JACC) evalaa el
rendimiento global del modelo, considerando tanto los
casos estables como los inestables. En los casos estables
o inestables ETCP, se espera que el modelo no
identifique generadores criticos. El Indice Jaccard para
casos inestables (JACCU) mide el desempefio tomando
en cuenta solo los escenarios inestables transitorios.

Por su parte, el Indice de Efectividad Jaccard
(JACCUE) determina la capacidad del modelo para
predecir conjuntos de generadores suficientes que eviten
la inestabilidad transitoria. A diferencia de otros
indicadores, no penaliza las predicciones con
generadores adicionales, siempre que el conjunto
estimado incluya a todos los clasificados como criticos.
Asi, JACCUE refleja la efectividad del modelo en
mitigar la pérdida de sincronismo, priorizando la
restauracion de la estabilidad del sistema sobre la
coincidencia exacta con las etiquetas. Si el modelo
predice menos generadores o un conjunto incompleto, no
es suficiente para mitigar la inestabilidad.

4. ANALISIS DE RESULTADOS

El analisis se realiza sobre el sistema IEEE New
England de 39 Dbarras, Figura 6, mediante la
incorporacion de 600 MW de generacion edlica y 600
MW de generacion fotovoltaica, ubicadas en las barras
34, 32 y 33, seleccionadas por su mayor potencial
renovable [5]. Cada parque fotovoltaico se modela con
dos centrales de 100 MW, mientras que cada parque
edlico estd conformado por 100 aerogeneradores de 2
MW, configuraciones que reflejan las caracteristicas
tipicas de los parques modernos [5].
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Figura 6: Sistema New England 39 Barras con Penetracion de
Energias Renovables [5]
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4.1 Bases de Datos

La base de datos empleada en este estudio se
desarrolla a partir de la metodologia aplicada en [5],
donde se detalla el procedimiento completo de
generacion y etiquetado de escenarios.

El conjunto final estd conformado por 9883
escenarios convergentes, obtenidos del calculo del flujo
optimo de potencia (OPF) en PYPOWER, agrupados en
tres bandas horarias: valle, resto y pico. Cada banda
incluye la integracion de 600 MW de generacion edlica'y
600 MW fotovoltaica, representando condiciones
operativas con alta penetracion de fuentes renovables.
Los resultados del calculo OPF se resumen en la Tabla
4.1.

Tabla 4.1: Resultado de Calculo de Flujo de Carga Optimo

. Casos — con FER
Banda horaria
Convergen No convergen
Valle 3335 3
Resto 4541 20
Pico 2007 94
Total 9883 117

A partir de los escenarios obtenidos en el flujo 6ptimo
de potencia, se ejecutaron simulaciones dindmicas RMS
en DIgSILENT PowerFactory, generando un conjunto
etiquetado seguin el estado de estabilidad del sistema, tal
como se muestra en la Tabla 4.2.

Las perturbaciones aplicadas corresponden a
cortocircuitos trifasicos despejados a los 80 ms y
desconexiones de generacion aplicadas a los 200 ms del
inicio de la simulacion.

Tabla 4.2: Clasificacién de Estado de Estabilidad por Banda

Horaria
Banda Horaria | Flag | Estado | #Casos
0 Estable 3236
Valle 1 ET 94
2 ETCP 5
0 Estable 1435
Pico 1 ET 451
2 ETCP 121
0 Estable 3259
Resto 1 ET 984
2 ETCP 298
Total, Estables 7930
Total, inestables ET 1529
Total, inestables ETCP 424

4.2 Evaluacion de Generadores Criticos

En los 1529 casos identificados como inestables
transitorios, el primer paso en la clasificacion de
generadores criticos consiste en formar el conjunto o
ranking de maquinas que pierden sincronismo, ordenadas
segln el instante temporal en que ocurre dicha pérdida.
Posteriormente, se evalta la estabilidad del sistema
aplicando la desconexion progresiva de los generadores
en el orden establecido. Este procedimiento permite
determinar cuales unidades, al ser desconectadas,
restablecen la estabilidad del sistema, por tanto,
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clasificdndolas como criticas.

JJIllll..

Figura 7: Numero de Generadores que Pierden Sincronismo
Frente a Generadores Etiquetados como Criticos

La Figura 7 muestra sobre el conjunto de casos
inestables transitorios, la comparacion entre la cantidad
de generadores que pierden sincronismo y aquellos que
son realmente criticos y provocan la inestabilidad del
sistema. Se observa que, para el caso de cinco
generadores, existen 618 casos aproximadamente, el 40
% del total en los que las maquinas pierden sincronismo.
Sin embargo, en solo 306 casos, cerca del 20 %, son cinco
los generadores efectivamente criticos. Otra situacion se
presenta en los casos con nueve generadores en el
ranking, 2 % de los escenarios, donde en ningun caso fue
necesario desconectar los nueve. De esto se concluye
que, aunque en condiciones criticas puedan llegar a
perder sincronismo hasta el 90 % de las unidades, no es

indispensable desconectar todas para recuperar la
estabilidad.

La metodologia propuesta demuestra que es posible
restablecer el sistema mediante la desconexion de un
nimero reducido de generadores, optimizando asi la
respuesta de control ante eventos severos.

4.3 Diseno del modelo RCNN

El modelo hibrido RCNN tiene como objetivo
identificar los generadores criticos responsables de la
pérdida de sincronismo ante inestabilidad transitoria.
Como entradas, utiliza tensores tridimensionales
formados por series de tiempo de las variables eléctricas
del sistema como se explica en el punto 3.4.1. La salida
del modelo consiste en un vector binario donde los
generadores criticos se etiquetan con valor 1 en los casos
etiquetados como ET, mientras que en los casos estables
o con problemas de ETCP se asigna el valor 0.

Basado en estudios previos sobre estabilidad
transitoria con DL [4], y considerando la naturaleza del
problema, se adopta la arquitectura hibrida mostrada en
la Figura 8.
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Figura 8: Modelo de Arquitectura de Red Hibrida

El modelo hibrido RCNN combina una red
convolucional (CNN) y una LSTM, integrando ¢l analisis
espacial y temporal de las sefiales eléctricas. La CNN esta
conformada por tres capas convolucionales con 64, 32 y
4 filtros, kernel de 3x3 y funcion de activacion ReLU,
seguidas de operaciones de max pooling (2x%2), Batch
Normalization y un Dropout de 0.1 para reducir el
sobreajuste. Las salidas se aplanan (flattening) y se
conectan a una capa densa de 32 neuronas.

Posteriormente, la LSTM, con 128 unidades y
funcion de activacion tanh, captura las dependencias
temporales de las sefiales aplicando normalizacién por
capas para estabilizar el entrenamiento.

Finalmente, las caracteristicas extraidas se procesan
en una capa densa de 64 neuronas con regularizacion L2,
seguida de una capa de salida con 9 neuronas con funcion
activacion sigmoide, que actia como clasificador y
estima la probabilidad de que cada generador sea critico.

Antes del entrenamiento, se definieron los
hiperparametros que controlan el proceso de aprendizaje
del modelo, los cuales fueron ajustados siguiendo el
esquema propuesto en [4]. La Tabla 4.3 resume los
principales hiperparametros de entrenamiento utilizados.

Tabla 4.3: Hiperparametros del Modelo [4]

Hiperparametros de Funciones / parametros

entrenamiento elegidos
Weighted Cross-Entropy
(WCE), 8 =0.001
Adam, learning rate = 0.0001
Glorot Uniform
64
1000

Funcioén de pérdida

Algoritmo de optimizacion
Técnica de inicializacion
Batch size

Epocas

El objetivo de ajustar hiperparametros es mejorar la
estabilidad del entrenamiento y la capacidad de
generalizacion del modelo, evitando el sobreajuste.

4.4 Entrenamiento del Modelo

Durante el entrenamiento, el modelo ajusta de forma
iterativa los pesos y sesgos internos para minimizar la
diferencia entre las predicciones y los valores reales.
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El modelo se entrena utilizando una ventana temporal
de 140 ms para las series de tiempo (U, 0,  y ®), disefiada
para capturar la respuesta dinamica del sistema durante
la perturbacion o contingencia y después de su despeje en
caso de fallas. Los datos presentan una frecuencia de
muestreo de 100 Hz, caracteristica de las PMU.

Los datos se dividen aleatoriamente en un 85 % (8400
casos) para el conjunto de entrenamiento —que incluye
validacion interna durante el proceso de ajuste— y un 15
% (1483 casos) para prueba, preservando la proporcion
de los distintos estados de estabilidad del sistema.

El desempeiio del modelo se evalia mediante su
funcion de pérdida, que cuantifica la discrepancia entre
las predicciones y los valores reales. Este analisis permite
diagnosticar problemas de sobreajuste (overfitting) o
subajuste  (underfitting), ademas de verificar la
representatividad de los conjuntos de entrenamiento y
validacion durante el proceso de aprendizaje.

Con el fin de evaluar el comportamiento del modelo
y verificar que no se presenta sobreajuste se muestra en
la Figura 9 el resultado del entrenamiento. En esta figura
se observa que, con un entrenamiento de 300 épocas, las
curvas de pérdida de entrenamiento y validacion
convergen de forma estable, lo que indica que el modelo

generalizacion.

LSTM
— CNN
—— RCNN
0.25

o o
= N
G S

Validation Loss

°
5

0.00
100 150

Epoch

250 300

Figura 10: Respuesta de Funcion de Perdida de Modelos CNN,
LSTM y RCNN

4.5  Resultados de Desempefio

Posterior al proceso de entrenamiento, el modelo se
evalua mediante las métricas de desempefio tanto en el
conjunto de entrenamiento como en el conjunto de
prueba, con el objetivo de verificar su capacidad para
obtener buenos resultados ante casos no conocidos, Tabla
44.

Tabla 4.4: Métricas de Desempeiio para Modelo Entrenado con

0.4 1

OB .. 300 Epocas
alcanza un equilibrio adecuado entre aprendizaje y Datos de Datos do
MM entrenamiento prueba
Ule|6|w JACC [%] 99,16% 99.47%
—— train loss JACCU [%] 95,16% 97,20%
uetlass JACCUE [%] 98,10% 98,72%

0.3 1

Loss

0.2 4

0.14

0.0

50 100

Figura 9: Respuesta de Funcién de Pérdida con 300 Epocas

Adicionalmente, se realizd el entrenamiento
independiente de los moddulos que integran la
arquitectura hibrida con el fin de evaluar el desempefio
individual de cada algoritmo. El primer componente
consiste en una red neuronal convolucional (CNN)
estructurada con tres capas ocultas de 64, 32 y 4 filtros,
respectivamente, empleando un tamafio de nucleo
uniforme de 3x3. El segundo componente corresponde a
una red de memoria a largo plazo (LSTM) configurada
con una unidad de memoria de 128 neuronas. Como se
observa en la Figura 10, la curva de aprendizaje
demuestra que el modelo hibrido RCNN alcanza una
convergencia superior, obteniendo la menor funcion de
pérdida en comparacién con las arquitecturas evaluadas
por separado.
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La Tabla 4.4 muestra que el modelo RCNN alcanza
un desempefio consistente entre los conjuntos de
entrenamiento y prueba, evidenciando una correcta
capacidad de generalizacion.

Para evaluar la efectividad del modelo hibrido de
aprendizaje profundo, en la Tabla 4.5 se compara el
resultado de desempefio frente a sus modelos
independientes CNN y LSTM. Como se puede observar
el modelo que mejores resultados tiene es el modelo
Hibrido con un rendimiento por encima del 97%.

Tabla 4.5: Métricas de Desempeiio entre Modelos de Aprendizaje
CNN, LSTM y RCNN

CNN LSTM RCNN
JACC [%] 99,02% | 98.85% | 99:47%
JACCU [%] 93,72% | 92,70% | 97.20%
JACCUE [%] | 97.17% | 96,30% | 98.72%

Las métricas JACC, JACCU y JACCUE reflejan una
alta precision y efectividad en la identificacion de
generadores criticos, sin indicios de sobreajuste.

Estos resultados demuestran que el modelo logra
mantener un equilibrio entre aprendizaje y validacion,
asegurando una respuesta confiable ante nuevos
escenarios operativos y contingencias no vistas durante
el entrenamiento.
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4.6  Aplicacion en Tiempo Real del Modelo RCNN

La implementacion del EADG requiere la ejecucion
en tiempo real del modelo RCNN, el cual identifica los
generadores criticos responsables de la pérdida de
estabilidad transitoria. A partir de esta salida se define el
conjunto de unidades a desconectar, configurando asi el
EADG de forma adaptativa seglin la contingencia y las
condiciones operativas del sistema.

El tiempo total de evaluacion depende de la duracion
de la ventana temporal utilizada para la clasificacion de
generadores criticos y de la capacidad de computo del
sistema donde se ejecuta.

Considerando el tiempo de procesamiento del modelo
y los retrasos propios de la operacion en linea, la Figura
11 muestra la secuencia temporal completa necesaria
para aplicar el esquema.

Linea de tiempo del EADG en tiempo real

doms
Fore

Figura 11: Linea de Tiempo del Esquema EADG en Operacion en
Tiempo Real

En la Figura 11 se muestran las etapas que conforman
la secuencia temporal del esquema EADG en operacion.
La ventana de datos (2) que registra las variables durante
la falla (1) y en posfalla ocupa 140 ms, seguida por la
adquisicion y transmision de informacion mediante PMU
(3), que requiere 100 ms [4]. El preprocesamiento de
datos (4), necesario para normalizar y estructurar las
series temporales, demanda aproximadamente 3,9 ms,
mientras que la clasificacion de generadores criticos con
el modelo RCNN (5) se realiza en 50 ms. Posteriormente,
la transferencia de la sefial de control (6) presenta una
latencia de 10 ms, y la accion final de los interruptores
(7) se ejecuta en 40 ms [4], completando un tiempo total
aproximado de 424 ms desde la ocurrencia de la falla.

En la Figura 12 se muestra un ejemplo representativo
del comportamiento del EADG en condiciones de
operacion en tiempo real, donde se evaliia la respuesta
del sistema ante una falla severa. La figura muestra la
evolucion del angulo del rotor de un generador critico
comparando los casos con y sin la accion del esquema.
Cuando el EADG se activa a los 0.5 segundos, la
maquina mantiene el sincronismo (curva naranja),
mientras que, sin su aplicacion, se observa una pérdida
de estabilidad (curva azul). Este comportamiento
confirma la efectividad del esquema, cuya accion
oportuna evita que el angulo del rotor exceda el limite de
+180°, preservando la estabilidad transitoria del sistema.

21

Angula de rotor f [deg]

07 s
Tiempa [5]

02

Figura 12: Respuesta Dindmica del Sistema con y sin Accién del
EADG

Se observa que, ante la contingencia a los 120 ms del
inicio de la simulacion, la ventana de medicion de 140
ms, la cual resulta suficiente para capturar la respuesta
dindmica del sistema para lograr la clasificacion
temprana del generador critico.

Esta duracion de 140 ms se determin6 en funcion del
tiempo necesario para que las variables eléctricas (dngulo
de rotor, tension y velocidad) presenten sus primeras
variaciones significativas tras la falla y que a la vez
permita la correcta prediccion temprana de los
generadores criticos con altos valores de precision y
efectividad (superiores al 97 %), logrando un desempefio
adecuado del EADG en tiempo real, como se evidencia
en la Figura 12.

Tal como se describe en la seccion 3.2, cualquier
modificacion en los parametros de generacion de la base
de datos —incluyendo cambios en la topologia de la red,
el tipo de contingencia o la localizacion de la falla—
requiere un reentrenamiento del modelo de aprendizaje
para garantizar la fiabilidad del desempefio. En este
contexto, se evalud la sensibilidad del modelo RCNN
ante variaciones en el tiempo de despeje de falla (TDF),
incrementandolo de 80 ms a 90 ms en diez casos
seleccionados  aleatoriamente con  etiqueta de
inestabilidad  transitoria  (ET). Los resultados
evidenciaron una reduccion significativa en la capacidad
de generalizacion del modelo, traduciéndose en una
prediccion deficiente de los generadores criticos,
unicamente prediciendo bien 4 de los 10 casos probados.
Estos hallazgos confirman que la ventana temporal de
despeje es una variable critica que debe ser integrada en
el proceso de entrenamiento para asegurar la robustez del
sistema ante escenarios operativos mas exigentes.

5. CONCLUSIONES Y RECOMENDACIONES

La metodologia de definicion del EADG basada en la
prediccion de generadores criticos con aprendizaje
profundo constituye una alternativa efectiva frente a los
esquemas tradicionales de desconexion de generacion
alin en sistemas con alta penetracion de generacion de
FER. El EADG aplicado considera una amplia gama de
escenarios operativos y contingencias que incluyen la
insercion de FER, determinando acciones especificas de
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desconexion en funcion de la respuesta dinamica del
sistema.

El esquema demuestra que no es necesario
desconectar todas las unidades que pierden sincronismo,
sino Unicamente aquellas identificadas como criticas por
la RCNN, lo que permite preservar la estabilidad del
sistema con una minima reduccion de generacion.

El modelo hibrido RCNN aprovecha la informacion
temporal y espacial contenida en las sefiales del sistema,
logrando una clasificacion precisa de los generadores
criticos sin requerir informacion sobre la topologia de la
red ni el tipo de contingencia aplicada. Sus métricas de
desempefio superiores al 97 % confirman su capacidad de
generalizacion y la eficacia del enfoque propuesto.

El andlisis temporal demuestra que el esquema es
capaz de operar en tiempo real, con tiempos de respuesta
inferiores a 0.5 s, incluyendo adquisicion,
preprocesamiento, clasificacion y accion de control. Este
margen es suficiente para evitar la pérdida de
sincronismo en los casos mas criticos.

Como lineas de trabajo futuro, se propone evaluar la
robustez del modelo frente a mediciones con ruido y a la
incertidumbre de la generacion basada en FER, con el fin
de identificar la configuracion que ofrezca el mejor
balance entre precision, velocidad y capacidad de
generalizacion.
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