Quinteros et al. / Optimización de costos de producción en la Producción para el control de inventario de materias primas
[9] A. Loibl and L. A. Tercero Espinoza, “Current
challenges in copper recycling: aligning insights
from material flow analysis with technological re-
search developments and industry issues in Europe
and North America,” Resour Conserv Recycl, vol.
169, Jun. 2021, doi:
10.1016/j.resconrec.2021.105462.
[10] P. Asadi, M. Akbari, A. Armani, M. R. M. Aliha, M.
Peyghami, and T. Sadowski, “Recycling of brass
chips by sustainable friction stir extrusion,” J Clean
Prod, vol. 418, no. June, p. 138132, 2023, doi:
10.1016/j.jclepro.2023.138132.
[11] A. I. Kibzun and V. A. Rasskazova, “Linear Integer
Programming Model as Mathematical Ware for an
Optimal Flow Production Planning System at
Operational Scheduling Stage,” Automation and
Remote Control, vol. 84, no. 5, pp. 529–542, 2023,
doi: 10.1134/S0005117923050065.
[12] H. Su, N. Zhou, Q. Wu, Z. Bi, and Y. Wang,
“Investigating price fluctuations in copper futures:
Based on EEMD and Markov-switching VAR
model,” Resources Policy, vol. 82, May 2023, doi:
10.1016/j.resourpol.2023.103518.
[13] J. M. Izar Landeta, C. B. Ynzunza Cortés, and E.
Zermeño Pérez, “Calculation of reorder point when
lead time and demand are correlated,” Contaduria y
Administracion, vol. 60, no. 4, pp. 864–873, Oct.
2015, doi: 10.1016/j.cya.2015.07.003.
[14] Patrão, R. L., & Napoleone, A. (2024). Decision
Making under Uncertainty for Reconfigurable
Manufacturing Systems: A framework for
uncertainty representation. IFAC-PapersOnLine,
58(19), 103–108.
https://doi.org/10.1016/j.ifacol.2024.09.102
[15] Napoleone, A., Andersen, A.-L., Brunoe, T. D., &
Nielsen, K. (2023). Towards human-centric
reconfigurable manufacturing systems: Literature
review of reconfigurability enablers for reduced
reconfiguration effort and classification
frameworks. Journal of Manufacturing Systems, 67,
23–34. https://doi.org/10.1016/j.jmsy.2022.12.014
[16] Barrera-Diaz, C. A., Nourmohammadi, A.,
Smedberg, H., Aslam, T., & Ng, A. H. C. (2023). An
Enhanced Simulation-Based Multi-Objective
Optimization Approach with Knowledge Discovery
for Reconfigurable Manufacturing Systems.
Mathematics, 11(6).
https://doi.org/10.3390/math11061527
[17] Ang, C. W., Yahaya, S. H., Salleh, M. S., &
Cahyadi, N. (2025). A Comprehensive Review of
Different Approaches used by Manufacturing
Industries in Handling Capacity Planning under
Demand Uncertainties. Journal of Advanced
Research in Applied Sciences and Engineering
Technology, 50(1), 88–106.
https://doi.org/10.37934/araset.50.1.88106
[18] Moghaddam, S. K., Houshmand, M., Saitou, K., &
Fatahi Valilai, O. (2020). Configuration design of
scalable reconfigurable manufacturing systems for
part family. International Journal of Production
Research, 58(10), 2974–2996.
https://doi.org/10.1080/00207543.2019.1620365
[19] Imseitif, J., & Nezamoddini, N. (2020). Macro and
micro-production planning for reconfigurable
manufacturing systems. Proceedings of the 2020
IISE Annual Conference, 784–789.
[20] Gainanov, D. N., Berenov, D. A., Nikolaev, E. A.,
& Rasskazova, V. A. (2022). Integer Linear
Programming in Solving an Optimization Problem at
the Mixing Department of the Metallurgical
Production. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics):
Vol. 13621 LNCS. https://doi.org/10.1007/978-3-
031-24866-5_12
[21] Rasskazova, V. A. (2024). LIP Model in Solving
RCPSP at the Flow Type Production. In
Communications in Computer and Information
Science: Vol. 1913 CCIS.
https://doi.org/10.1007/978-3-031-48751-4_6
[22] Angizeh, F., Montero, H., Vedpathak, A., &
Parvania, M. (2020). Optimal production scheduling
for smart manufacturers with application to food
production planning. Computers and Electrical
Engineering, 84.
https://doi.org/10.1016/j.compeleceng.2020.106609
[23] Coronado-Hernandez, J. R., de la Hoz, L., Leyva, J.,
Ramos, M., & Zapatero, O. (2020). Linear
programming model to minimize the production
costs of an adhesive tape company | Modelo
programación lineal para minimizar los costos de
producción de una empresa de cintas adhesivas.
Proceedings of the LACCEI International Multi-
Conference for Engineering, Education and
Technology.
https://doi.org/10.18687/LACCEI2020.1.1.369
[24] Vanli, A. S., & Karas, M. H. (2025). Material and
Process Modification to Improve Manufacturability
of Low-Lead Copper Alloys by Low-Pressure Die
Casting Method. Metals, 15(2).
https://doi.org/10.3390/met15020205
[25] Ying, K.-C., Lin, S.-W., Pourhejazy, P., & Lee, F.-
H. (2025). Production scheduling of additively
manufactured metal parts. CIRP Journal of
Manufacturing Science and Technology, 57, 100–
115. https://doi.org/10.1016/j.cirpj.2025.01.005