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Abstract

Accurate short-term electricity demand forecasting is
essential for the technical and economic operation of the
Ecuadorian power system. This paper presents a
comparison between Long Short-Term Memory
(LSTM) neural networks and the XGBoost algorithm
for short-term load forecasting, incorporating
exogenous variables such as apparent temperature and
national holidays. Hourly demand data were obtained
from the CENACE database starting in 2021, and
meteorological data were sourced from the Open-Meteo
satellite platform. A recursive single-step forecasting
strategy was implemented for a 24-hour prediction
horizon. Results show that the LSTM model achieved
the highest accuracy, significantly outperforming
XGBoost. The study concludes that incorporating
exogenous variables improves forecasting performance
and that LSTM provides a reliable approach for short-
term load prediction to support national power system
planning.

Index terms— LSTM, XGBoost, short-term load
forecasting, apparent temperature, Ecuador, CENACE.

Recibido: 08-11-2025, Aprobado tras revision: 15-01-2026

Resumen

La prediccion precisa de la demanda eléctrica es
esencial para la operacion técnico-econdmica del
sistema eléctrico ecuatoriano. Este trabajo presenta una
comparacion entre los modelos Long Short-Term
Memory (LSTM) y XGBoost para la prediccion de la
demanda de corto plazo, incorporando variables
exogenas como la temperatura aparente y los feriados
nacionales. Se utilizaron registros horarios del
CENACE desde 2021 y datos meteoroldgicos satelitales
del portal Open-Meteo. La estrategia empleada fue de
prediccion unipaso recursiva para un horizonte de 24
horas. Los resultados muestran que ¢l modelo LSTM
alcanza  una  mayor  precision, superando
significativamente a XGBoost. Se concluye que la
inclusion de variables ex6genas mejora la exactitud del
prondstico y que la arquitectura LSTM constituye una
herramienta robusta para la planificacion operativa y
energética del sistema ecuatoriano.

Palabras clave— LSTM, XGBoost, prediccion de
demanda, temperatura aparente, CENACE, Ecuador.
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1. INTRODUCCION

Una prediccion adecuada de la demanda energética es
fundamental para la operacion técnico-econdmica de los
sistemas eléctricos modernos. Predicciones confiables
permiten lograr un despacho 6ptimo de los recursos de
generacion, manejo eficiente de la red y una adecuada
planificacion. Los cambios en los patrones de consumo
debidos a el crecimiento urbano, desarrollo industrial y
econdmico y a la creciente adopcion de generacion no
convencional (solar, eolica etc...) han introducido
nuevos desafios al incrementar la variabilidad e
incertidumbre en la operacion de la red.

La prediccion de series temporales puede abordarse
desde distintos paradigmas, entre los cuales destacan los
modelos secuenciales, como las redes Long Short-Term
Memory (LSTM), y los modelos tabulares basados en
arboles, como Extreme Gradient Boosting (XGBoost).
Ambos enfoques difieren en la forma en que representan
y aprenden la informacion temporal. Mientras las LSTM
modelan  explicitamente  dependencias  temporales
mediante el procesamiento secuencial de los datos,
XGBoost requiere transformar el problema en uno
tabular mediante retardos y variables exdgenas.

Desde una perspectiva practica, XGBoost presenta
ventajas en términos de eficiencia computacional e
interpretabilidad, mientras que las LSTM ofrecen mayor
flexibilidad para capturar dindmicas temporales
complejas, a costa de una mayor complejidad de
entrenamiento. Esta diferencia motiva una comparacion
sistematica entre ambos enfoques en aplicaciones de
prondstico operativo.

En este trabajo se comparan modelos LSTM vy
XGBoost en la prediccion de demanda eléctrica de corto
plazo a nivel de sistema pais. La evaluacion se realiza
mediante un estudio de ablacion, considerando como
escenario base la demanda historica con un retardo de 24
horas y analizando de forma incremental la inclusion de
temperatura aparente de la ciudad de Guayaquil,
codificaciones temporales, dias feriados y un mayor
nuimero de retardos. El desempefio se evalua utilizando
MAE, RMSE vy tiempo de entrenamiento, permitiendo
analizar compromisos entre precision y eficiencia
computacional.

Los datos de demanda corresponden a registros del
Operador Nacional de Electricidad del Ecuador
(CENACE) desde 2021, mientras que los datos
meteorologicos provienen del servicio Open-Meteo. La
hipotesis central establece que la inclusion de variables
exogenas, particularmente la temperatura aparente de la
region de Guayaquil (lugar considerado como de alta
relevancia de demanda tanto industrial, comercial y
residencial), mejora la precision y robustez de los
modelos de prediccion de demanda eléctrica de corto
plazo.
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2. DATOSY FEATURE ENGINEERING

En esta seccion describe el conjunto de datos empleado y
el proceso de feature engineering aplicado con el
objetivo de capturar de manera adecuada la dindmica
temporal y los factores exdgenos que influyen en la
demanda eléctrica. Las distintas fuentes de datos y
justificaciones se describen a continuacion

2.1
2.1.1

Fuentes de Datos
Demanda Eléctrica

La demanda historica proveniente de los registros
histéricos del CENACE, esta es calculada mediante la
agregacion de la generacion total mas las importaciones
de energia.

2.1.2  Variables meteorologicas

Los datos meteoroldgicos se han tomado desde Open
- Meteo, plataforma que provee tanto de mediciones
satelitales historicas como de predicciones. En este caso
solamente la temperatura aparente de la ciudad de
Guayaquil

2.1.3  Feriados

Los dias feriados son usados para tomar en cuenta las
variaciones del comportamiento del consumo de energia
durante estos dias. La fuente de estos datos es el
calendario de feriados publicado por el Gobierno
Nacional del Ecuador [1]

2.2 Preprocesamiento

La base de datos historica de demanda del CENACE
no requirié un preprocesamiento adicional debido a que
internamente se maneja este procedimiento donde se
tratan los valores faltantes y atipicos basadndose en
bitacoras de operacion y planificacion.

Con respecto a los datos provenientes de Open Meto
tampoco se realiza un preprocesamiento adicional al que
realiza la plataforma de manera interna para proveer los
datos.

2.2.1  Escalamiento

Todas las variables continuas se normalizan usando
el escalador MinMaxScaler, transforméandolas en un
rango entre 0 a 1, asegurando asi que la diferencia entre
las magnitudes de los datos como la demanda y
temperatura (2000 MW a 4500 MW y 20° a 40 °) no sean
tan significativas y que contribuyan de manera
proporcional durante el entrenamiento de los modelos.
Esta transformacion mejora el rendimiento y estabilidad
de la convergencia especialmente en arquitecturas de
redes neurales como lo es la LSTM [2].

2.3  Feature Engineering

Con la finalidad de mejorar la capacidad predictiva de
los modelos, se aplicaron diversas técnicas de feature
engineering. El conjunto de datos resultante integra
informacion de demanda  historica,  variables
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meteorologicas, dias feriados y codificaciones
temporales, con el objetivo de preservar la naturaleza
ciclica de la demanda eléctrica..

2.3.1  Valores previos (Lag Features)

Los valores previos o rezagos (lag features) se
construyen referenciando observaciones pasadas de la
demanda e incorporandolas como variables adicionales
de entrada. Este tipo de variables es fundamental para
capturar la autocorrelacion y las dependencias
temporales presentes en la serie, permitiendo a los
modelos aprender patrones de comportamiento,
estacionalidades e inercia propias del consumo eléctrico

(3], [4].

Desde un punto de vista estadistico, la relevancia de
los rezagos se evalua mediante el analisis de la funcion
de autocorrelacion (ACF) y la funcion de autocorrelacion
parcial (PACF). La Figura 1 muestra la ACF de la
demanda eléctrica, donde se observa una fuerte
dependencia temporal de corto plazo (ACF > 0.9 en los
primeros rezagos) y una marcada estacionalidad diaria,
con picos significativos en multiplos de 24 horas. En
particular, el rezago de 72 horas presenta un valor de
autocorrelacion de aproximadamente 0.71, evidenciando
que la demanda conserva informacion relevante al menos
durante tres ciclos diarios completos. A partir de este
horizonte, la reduccion del valor de la ACF es marginal.

Funcién de autocorrelacion de la demanda

Autocorrelacion

Lag (horas)

Figura 1: Representacion de Division de Datos en Entrenamiento,
Validacién y Prueba

Partial Autocorrelation Function (PACF) - Demanda Eléctrica
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Figura 2: PACF de la Demanda

Por su parte, la PACF, como se muestra en la Figura
2 indica que la dependencia directa de la demanda se
concentra principalmente en el primer rezago, mientras
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que los rezagos superiores presentan valores cercanos a
cero. Esto sugiere que la persistencia observada a
horizontes mayores se transmite de forma indirecta,
principalmente a través de patrones periddicos diarios.
Dado que las redes LSTM son capaces de modelar
dependencias no lineales y de largo plazo, se seleccion6
una ventana autorregresiva de 72 horas.

2.3.2

La temperatura aparente es una variable
meteoroldgica que representa la temperatura percibida
por el ser humano, combinando el efecto de la
temperatura del aire con la humedad relativa [5]. Niveles
altos de humedad reducen la capacidad el cuerpo de
disipar calor mediante sudoraciéon incrementado asi la
percepcion del calor.

Temperatura aparente

Esta variable provee un indicador mas real del inconfort
térmico y demanda de acondicionamiento (aires, HVAC
etc ...) la cual estd directamente relacionado con
variaciones en el consumo energético [6].

En base a experiencia del CENACE, se ha tomado
como indicador solamente la temperatura aparente de la
ciudad ¢ Guayaquil, ciudad considerada como gran
centro de carga industrial comercial y residencial. En este
trabajo se demuestra la influencia de usar la temperatura
solamente de esta ciudad como variable exogena en la
prediccion.

2.3.3  Dias feriados

Este segundo indicador son los dias feriados, que se
presenta como un indicado binario. Este indicador
permite a los modelos de prediccion diferenciar entre un
dia de trabajo normal y feriados [4].

2.3.4  Codificacion ciclica temporal

Para mantener la naturaleza ciclica de la demanda,
variables temporales como el mes, dia del mes, dia de la
semana y hora del dia son codificados usando
transformaciones del seno y coseno [4]. Este método
preserva la relacion periodica entre las unidades de
tiempo permitiendo una transiciéon suave por ejemplo
entre diciembre y enero (12 y 1) o las 23:00 y las 00:00.

3. PROTOCOLO EXPERIMENTAL

Esta seccion se presenta el protocolo experimental
adoptado para el entrenamiento, validacion y evaluacion
de los modelos propuestos.. El disefio del protocolo
experimental busca aislar el impacto de cada componente
del modelo y de las variables consideradas, permitiendo
una evaluacion rigurosa y consistente del desempefio
predictivo bajo un mismo marco metodologico.

3.1 Definicion de la Tarea de Prediccion

La tarea de pronéstico abordada en este estudio
consiste en la prediccion de la demanda eléctrica con un
horizonte temporal de 24 horas y una frecuencia de
muestreo horaria. Este horizonte de prediccion fue
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seleccionado debido a que corresponde al marco
temporal en el cual se realiza la planificacion operativa
del sistema eléctrico, incluyendo la programacion del
despacho de generacion y la toma de decisiones
asociadas a la operacion diaria. La eleccion de una
resolucion horaria permite capturar de forma adecuada
las variaciones intradiarias de la demanda, preservando
los patrones ciclicos caracteristicos del comportamiento
del consumo eléctrico, y asegurando que las predicciones
generadas sean directamente aplicables a los procesos
reales de planificacion y operacion del sistema.

3.1.1  Prediccion de paso unico (Unistep)

En esta estrategia de prediccion, se obtiene una tinica
prediccion para un solo paso en el futuro. Es decir que
usando la secuencia de entrada, se predice solamente el
siguiente valor como se indica en la Figura 3 [7].

prediction

T4 Ta T3 Ty Ig >

TE

Figura 3: Prediccion de Paso Simple. Tomado de [7]

3.1.2  Prediccion de multiples pasos (Multistep)

En este procedimiento, la primera prediccion
generada por el modelo se incorpora como parte de la
secuencia de entrada para estimar el valor del siguiente
paso temporal, y asi sucesivamente, hasta alcanzar el
horizonte deseado. [7].

NN ENEY, ]

T =

Figura 4: Prediccion Modelo de Paso Unico Recurrente.
Tomado de [7]

3.2  Separacion en Entrenamiento, Validacién y

Prueba

El periodo de analisis comienza desde el primero de
encro de 2021 en adelante, con registros horarios de
demanda. Este punto de inicio fue seleccionado debido a
que los patrones de consumo fueron afectados por la
pandemia del COVID-19, los datos a partir del 2021 para
la demanda del Ecuador retomaron la tendencia y
patrones de consumo. Adicionalmente usar conjuntos
relativamente cortos evita cambios bruscos en los
patrones de consumo de energia.

3.2.1  Divisiéon temporal de los datos

Los datos se dividen de forma cronologica en conjuntos
de entrenamiento, validacion y prueba como se indica en
la Figura 5, evitando cualquier fuga de informacion
temporal. El conjunto de entrenamiento se utiliza para el
ajuste de los modelos, el conjunto de validacion para la
seleccion de hiperparametros y el conjunto de prueba
para la evaluacion final del desempefio.
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Entrenamiento Validacion “ Prueba —l
\ )\ J
Y Y
Datos Vistos Nuevos
por el Modelo Datos

Figura 5: Representacion de Division de Datos en Entrenamiento,
Validaciéon y Prueba

Para el entrenamiento de los modelos, se usa el 80%
del conjunto total de datos para ser usados en la etapa de
entrenamiento y 20% en la etapa de prueba.

3.3  Configuracion de los Modelos

Esta seccion describe la configuracion de los modelos
considerados en el estudio, detallando su arquitectura.

3.3.1 Arquitectura de la red LSTM

La arquitectura LSTM se defini6 con una
configuracion base fija, utilizada durante el estudio de
ablacion de variables exogenas con el fin de aislar su
impacto en ¢l desempeiio predictivo.

La arquitectura LSTM usada esta compuesta por una
primera capa LSTM con 64 unidades, seguida por una
capa de dropout, una segunda capa LSTM con 32
unidades, otra capa de dropout y una capa densa de salida
(Dense(1)). Esta estructura estd disefiada para capturar
tanto las dependencias temporales de mediano plazo
como las relaciones no lineales presentes en la serie de
demanda eléctrica. La eleccion del namero de unidades
LSTM (64 y 32) corresponde a la busqueda de un
equilibrio entre la capacidad de modelado y la
complejidad computacional [8], incrementar el tamafio
de las capas puede conducir a un mayor riesgo de
overfitting y tiempos de entrenamiento mas largos sin
beneficios proporcionales en precision .

Tabla 1: Arquitectura de las LSTM

Configuracion | Unidades por | Dropout entre | Capa de
capa capas salida
Base 64 —-32 Si(0.2) Dense (1)

La inclusion de capas dropout con una tasa moderada
(~0.2) actGa como una técnica de regularizacion,
reduciendo la co-adaptacion de neuronas y ayudando a
prevenir el sobreajuste del modelo durante el
entrenamiento [9]. Esta practica es recomendada en la
literatura para modelos recurrentes, ya que introduce
ruido estocastico controlado en el proceso de aprendizaje
y mejora la capacidad de generalizacion del modelo.

Finalmente, la capa densa de salida con una neurona
permite mapear la representacion interna de la secuencia
hacia un unico valor de prediccion continua, que en este
caso corresponde a la demanda horaria. En la Tabla 1 se
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presenta un resumen de la arquitectura usada para la red
neuronal LSTM.

3.3.2  Arquitectura del modelo Xgboost

El modelo XGBoost fue configurado mediante un
conjunto de hiperparametros que incluyen el nimero de
arboles (n_estimators), la profundidad maxima de los
arboles (max depth), la tasa de aprendizaje
(learning_rate), el tamafio minimo de muestras por hoja
y los parametros de regularizacion, los cuales permiten
controlar la complejidad del modelo y mitigar el
sobreajuste. Al igual que en el caso del modelo LSTM,
esta configuracion se mantuvo fija durante todo el estudio
de ablacion de variables exdgenas, con el objetivo de
aislar el impacto real de la informacién de entrada sobre
el desempeitio predictivo.

En particular, se emplearon 100 estimadores, una tasa
de aprendizaje de 0.02 y una profundidad maxima de 50.
La eleccion de una tasa de aprendizaje reducida responde
a la necesidad de garantizar un proceso de optimizacion
estable, ya que valores elevados del learning rate pueden
generar convergencia inestable o conducir a soluciones
suboptimas [10]. Este valor se compensé mediante un
nimero moderado de estimadores, permitiendo que el
modelo aprenda de forma progresiva y controlada.

Asimismo, se partié de una configuracion con una
capacidad de representacion elevada, tanto en términos
de profundidad como de nimero de arboles, bajo la
premisa de que, una vez alcanzado un nivel adecuado de
generalizacion, incrementos adicionales en estos
hiperparametros no suelen traducirse en mejoras
significativas de precision, sino Unicamente en un
aumento del costo computacional y del tiempo de
entrenamiento [10].

Con la finalidad de evitar un overfitting en [11],
documentacion oficial de xgboost, se configura en paro
de entrenamiento temprano o “early stopping” el cual
evita que el modelo se sobre ajuste restaurando los
mejores hiperarametros después de 15 iteraciones.

De este modo, se asegura que el desempeiio del
modelo no esté limitado por su capacidad estructural y
que las diferencias observadas se atribuyan
principalmente a la contribucion de las variables
consideradas.

3.3.3  Criterios de reproducibilidad

Con el proposito de asegurar la reproducibilidad y la
trazabilidad de los experimentos realizados, se definieron
explicitamente mecanismos de control de la aleatoriedad
y se documentd de manera detallada el entorno
computacional empleado.

En particular, se fijo la semilla aleatoria con el valor
42 en todas las librerias relevantes, con el fin de reducir
la variabilidad asociada a los procesos estocasticos
inherentes al entrenamiento y evaluacion de los modelos.
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Asimismo, se especifican las versiones exactas del
software utilizado:
Xgboost 3.1.2

numpy 2.4.0
pandas 2.3.3
tensorflow 2.20.0
scikit-learn 1.8.0
Python 3.13.5

Los experimentos se ejecutaron en un sistema
equipado con un procesador Intel Core i7-12700H y 16
GB de memoria RAM a 3200 MHz, lo que proporciona
un marco de referencia claro sobre los recursos
computacionales disponibles y permite evaluar la
reproducibilidad y viabilidad de los resultados en
condiciones de hardware comparables.

Todos los experimentos se
condiciones de operacion idénticas.

4. ESTUDIO DE ABLACION

realizaron  bajo

El disefio del estudio de ablacion se orienta a evaluar
de forma sistematica la contribucion individual y
conjunta de los distintos componentes del modelo y de
las variables exogenas incorporadas al proceso de
prediccion. A través de la eliminacion controlada y
progresiva de conjuntos especificos de caracteristicas, y
manteniendo constantes el protocolo experimental y la
configuracion de los modelos, se analiza el impacto real
de cada elemento sobre el desempefio predictivo. Este
enfoque permite identificar los factores mas relevantes en
la modelacion de la demanda eléctrica y proporciona una
base objetiva para la interpretacion de los resultados y la
validacion de las decisiones metodologicas adoptadas
[12], [13].

4.1 Escenarios del Estudio de Ablacion

El estudio de ablacion se estructur6 mediante un
conjunto de escenarios disefiados para evaluar de forma
progresiva el aporte de cada grupo de variables al
desempefio predictivo de los modelos. Cada escenario
incorpora un subconjunto especifico de caracteristicas,
partiendo de una configuracion base que considera
unicamente la demanda histérica y afadiendo
gradualmente variables exdgenas de distinta naturaleza.
Esta estrategia permite cuantificar de manera aislada y
comparativa la contribucion de las variables
meteorologicas, de calendario y de codificacion
temporal, asi como su efecto combinado sobre la
capacidad predictiva del sistema.

Tabla 2: Descripcién de los Escenarios de Ablacion

Escenario Conjunto de caracteristicas incluidas
A0 Demanda histdrica + variables meteorologicas +
variables de calendario + codificacion temporal +
Valores previos de demanda (72)
Al AO0 sin variables meteoroldgicas
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A2 AOQ sin variables de feriados

A3 AO sin codificacion temporal

4.2 Métricas de Evaluacion

Las métricas de evaluacion permiten evaluar el
desempefio de los modelos de prediccion, métricas
comunmente utilizadas en problemas de regresion y
prondstico de series temporales son el error medio
absoluto, raiz del error cuadratico medio y coeficiente de
determinacion, con el objetivo de cuantificar la precision
y consistencia de las estimaciones respecto a los valores
reales observados

4.2.1  Error medio absoluto (MAE)

El Error Medio Absoluto (Mean Absolute Error)
calcula el valor absoluto entre ¢l promedio de las
diferencias de los valores predichos con los observados
[14]. Su calculo se realiza con la ecuacion 1.

1v ) (1)
MAE = HZ lyi — 9l
i-1

Donde:

y;es el valor real de la demanda en el instante ¢,
y;es el valor pronosticado,

n es el nimero total de observaciones

En términos practicos, el MAE indica cuantas
unidades (por ejemplo, MW) se equivoca ¢l modelo, en
promedio, al realizar la prediccion.
Un MAE menor implica mayor precision promedio

4.2.2  Raiz cuadrdtica del error medio (RMSE)

Esta métrica mide el tamafio promedio de los errores
penalizo con mayor fuerza a los errores grades debido al
cuadrado. Esta métrica es util para detectar errores
puntuales significativos del modelo [15]. Su calculo esta
dada por la siguiente expresion:

@)
MSE =

Donde:

y;es el valor real de la demanda en el instante ¢,
y;es el valor pronosticado,

n es el numero total de observaciones

Un RMSE bajo indica que las predicciones, en

promedio, estan cerca de los valores reales
4.2.3  Coeficiente de determinacién (R?)

Esta métrica expresa el grado en el que el modelo se

ajusta, indicando la proporcione de la variabilidad total
[15]. Su célculo se realiza con la siguiente expresion:

1 A
n 21 = 9)* ©

RZ=1- 1
HZ?=1(yi -y)?

Donde:

y;es el valor real de la demanda en el instante ¢,
y;es el valor pronosticado,

n es el numero total de observaciones

Valores cercanos a | se interpretan como una alta
capacidad predictiva.

4.2.4  Error porcentual absoluto medio (MAPE)

El Error Porcentual Absoluto Medio (MAPE) permite
expresar el error como un porcentaje respecto al valor
real de la demanda [16]. Su calculo esta dado por la
siguiente expresion:

MAPE = — —
N il Y

N A
100 Vi —yi| Q)

Donde:

y;es el valor real de la demanda en el instante ¢,
y;es el valor pronosticado,

N es el nimero total de observaciones,

5. RESULTADOS

Las predicciones se evaluaron bajo un mismo rango de
tiempo, del 8 de agosto de 2024 al 8 de septiembre de
2024. Los resultados del estudio de ablacion para el
modelo XGboost se presentan en la Tabla 3 mientras que
para el LSTM se presentan en la

Tabla 4.
Tabla 3: Resultados de Estudio de Ablacion para el Modelo
XGboost

Modelo MAE RMSE MAPE R2
A0 268.47 32341 7.25 0.43
Al 265.68 319.85 7.18 0.44
A2 269.57 325.35 7.27 0.42
A3 291.29 359.04 7.89 0.30

Tabla 4: Resultados de Estudio de Ablacion para el modelo

LSTM
Modelo MAE RMSE MAPE R2
A0 217.80 268.60 5.59 0.57
Al 254.96 321.41 6.50 0.39
A2 262.46 327.50 6.69 0.37
A3 363.45 472.80 9.22 -0.32
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Las métricas indican que el mejor resultado la obtuvo
el modelo LSTM con todas las variables exdgenas,
seguido del modelo XGboost que no incluye variables
meteorologicas.

Contrario a lo que se esperaba, el desempefio del
modelo XGboost no incrementa significativamente con
la inclusion de la temperatura aparente ni con la variable
de dias feriados, sin embargo la codificacion temporal si
ayuda significativamente al proceso de predicciodn, en
contraste el modelo de red LSTM presenta una notable
mejoria con la inclusion de la variable de la temperatura
aparente de la ciudad de Guayaquil coincidiendo con la
experiencia de los departamentos de operacion y
planificacion del CENACE.

Visualmente la diferencia entre los dos modelos se
puede apreciar en la Figura 6, donde se muestra
graficamente la diferencia entre los dos modelos.

Los tiempos de entrenamiento en promedio por
modelo se presentan en la Figura 7.

— L5STM
- XGBoost
— Real

4250 4

4000 1

3750 4

3500 4

3250 4

3000 A

2750

2500 4

Figura 6: Comparativa Modelos LSTM vs. XGboost vs.
Demanda real el 9 de septiembre de 2024

LSTM
Tiempo de entrenamiento

XGBoost

Figura 7: Comparacién de tiempos de entrenamiento

6. CONCLUSIONES

Los resultados del estudio confirman que la red
neuronal LSTM, al incorporar el conjunto completo de
variables exdgenas, presenta el mejor desempefio global
en la tarea de prondstico de la demanda eléctrica. Su
arquitectura recurrente le permite capturar de manera
efectiva dependencias temporales no lineales y patrones
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complejos, lo que se traduce en mejoras consistentes
respecto al modelo XGBoost bajo todos los escenarios de
evaluacion considerados.

El andlisis del estudio de ablacion evidencia que la
temperatura aparente de la ciudad de Guayaquil
constituye una de las variables exdgenas mas relevantes
para el modelo LSTM. Su inclusiéon mejora de forma
significativa la precision de las predicciones, lo cual es
coherente con la experiencia operativa del personal de
planificacion y operacion del CENACE, y confirma que
el comportamiento de la demanda eléctrica nacional esta
fuertemente influenciado por el consumo de esta ciudad.

En contraste, el modelo XGBoost muestra una
sensibilidad limitada frente a variables meteorologicas y
de calendario, como la temperatura y los dias feriados.
Sin embargo, la incorporacion de la codificacion
temporal permite una mejora apreciable en su
desempeilo, al facilitar la captura de la estacionalidad y
los patrones periddicos de la demanda, lo que refuerza la
importancia de este tipo de representaciones en modelos
basados en arboles.

Desde el punto de vista computacional, se¢ observa
una diferencia clara entre ambos enfoques. El modelo
LSTM, si bien ofrece mayor precision, requiere tiempos
de entrenamiento mas elevados, mientras que XGBoost
destaca por su rapidez y eficiencia computacional,
aunque con un desempefio predictivo inferior. En este
contexto, los resultados sugieren que el modelo LSTM es
mas adecuado para la planificacion operativa del sistema
eléctrico con un horizonte de 24 horas de antelacion,
mientras que XGBoost puede emplearse como una
herramienta complementaria para la estimacion rapida de
tendencias intra-horarias, aportando informacion til en
escenarios donde el tiempo de computo es un factor
critico.

7. RECOMENDACIONES

Como lineas de trabajo futuro, se recomienda
profundizar el analisis experimental mediante estudios
adicionales que permitan optimizar el desempefio y la
eficiencia computacional de los modelos evaluados. En
primer lugar, resulta pertinente realizar un estudio de
ablacion especifico orientado a determinar el nimero
optimo de lags para cada modelo, con el fin de identificar
la longitud de la ventana temporal que maximiza la
capacidad predictiva sin introducir redundancia
innecesaria en las entradas.

En segundo lugar, se sugiere desarrollar un analisis
sistematico del nimero de estimadores del modelo
XGBoost, buscando una configuracion que permita
reducir aun mas los tiempos de entrenamiento y
prediccion sin  comprometer significativamente la
precision. Este estudio podria aportar criterios practicos
para el uso del modelo en escenarios operativos donde la
eficiencia computacional es prioritaria.

Adicionalmente, se recomienda explorar
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arquitecturas LSTM de  mayor profundidad,
incorporando un mayor nimero de capas ocultas, con el
objetivo de evaluar si un aprendizaje mas profundo es
capaz de capturar patrones adicionales y mejorar el
pronodstico de la demanda eléctrica. Este andlisis
permitiria establecer un balance mas claro entre
complejidad del modelo, precision y costo
computacional.

Finalmente, se propone ampliar el conjunto de
variables meteorologicas consideradas, incorporando
temperaturas de otras ciudades relevantes del pais para
analizar su posible influencia sobre la demanda eléctrica
nacional. En particular, resulta de interés evaluar
ciudades como Quito y Cuenca, ubicadas en la cordillera
de los Andes, donde las condiciones climaticas difieren
sustancialmente de las zonas costeras y podrian presentar
una relacion distinta, e incluso inversa, entre temperatura
y demanda, asociada a un mayor uso de sistemas de
calefaccion.
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