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Abstract

The accurate representation of the dynamic behavior of
loads and the capture of the temporal variability of their
parameters is a fundamental element in the analysis and
operation of electrical systems. To this end, automatic
and online load modeling methodologies and dynamic
load models are used, and the advantages of
synchrophasor measurements are exploited. Among the
most widely used models is the Exponential Recovery
Load (ERL), capable of representing not only the static
behavior of loads, but also the dynamics of exponential
recovery in the presence of voltage disturbances.
However, the process of parametric identification of this
model has been superficially researched in previous
studies, leaving open questions about its accurate
estimation in real environments. This work
comprehensively addresses this identification process,
considering everything from the selection of the most
appropriate optimization algorithm, with an emphasis
on automatic, online, and synchrophasor-based
schemes, to the determination of the minimum
requirements that these measurements must meet to
ensure reliable estimates of the ERL model. The results
show that the Trust-region-reflective, Interior-point, and
SQP algorithms offer the best performance in estimating
model parameters. Likewise, it is demonstrated that
synchrophasor measurements must record voltage
variations of at least 0.003 pu to ensure accurate
parameter identification.

Index terms—Load Modeling, ERL, Exponential
Recovery Load Model, Parametric Identification, PMU,
Synchrophasor.
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Resumen

La representacion adecuada del comportamiento
dindmico de las cargas y la captura de la variabilidad
temporal de sus parametros constituye un clemento
fundamental en el analisis y operacion de los sistemas
eléctricos. Para ello, se emplean metodologias de
modelamiento de carga automaticas y en linea, modelos
de carga dinamicos y, se aprovechan las ventajas de las
mediciones sincrofasoriales. Entre los modelos mas
utilizados se encuentra el Exponential Recovery Load
(ERL), capaz de representar no solo el comportamiento
estatico de las cargas, sino también la dinamica de
recuperacion exponencial frente a perturbaciones de
tension. No obstante, el proceso de identificacion
paramétrica de este modelo ha sido superficialmente
abordado en estudios previos, lo que deja abiertas
interrogantes sobre su estimacion precisa en entornos
reales. Este trabajo aborda de forma integral dicho
proceso de identificacion, considerando desde la
seleccion del algoritmo de optimizacion mas adecuado,
con énfasis en esquemas automaticos, en linea y basados
en mediciones sincrofasoriales, hasta la determinacion
de los requisitos minimos que deben cumplir estas
mediciones para garantizar estimaciones confiables del
modelo ERL. Los resultados muestran que los
algoritmos Trust-region-reflective, Interior-point y SQP
ofrecen el mejor desempefio en la estimacion de
parametros del modelo. Asimismo, se evidencia que las
mediciones sincrofasoriales deben registrar variaciones
de tension de al menos 0.003 pu para asegurar una
identificacion precisa.

Palabras clave— Modelamiento de carga, ERL,
Modelo de Recuperacion Exponencial, Identificacion
Paramétrica, PMU, sincrofasor.
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1. INTRODUCCION

Actualmente contar con modelos dinamicos
validados de los sistemas eléctricos de potencia es un
tema fundamental, pues los sistemas operan cada vez mas
cerca de sus limites y en consecuencia requieren de
estudios y simulaciones de mayor precision [1]. Uno de
los elementos mas dificiles de validar son las cargas,
especificamente sus modelos, pues estos varian
continuamente en el tiempo [2], a diferencia de, por
ejemplo, los modelos de un transformador o de un
generador sincrono.

A pesar de esta necesidad, gran parte de las industrias
del sector eléctrico a nivel mundial utilizan modelos de
carga estaticos para realizar estudios en estado dindmico
[3]. Esta brecha ha impulsado una tendencia creciente por
investigar procesos de identificacion paramétrica
(estimacion de los valores de los parametros de los
modelos de carga) automdticos y que se ejecuten
continuamente en linea [2], aprovechando las mediciones
sincrofasoriales reportadas por Unidades de Medicion
Fasorial (PMU) [4], [5], cuya alta tasa de reporte, de hasta
50 o 60 fasores por segundo (FPS, Frames per Second)
[6], permite capturar el comportamiento dinamico de las
cargas.

Desde la perspectiva de la estabilidad de tension, uno
de los elementos mas relevantes por modelar son los
motores de induccién [7], sin embargo, su modelo
dindmico es complejo, por lo cual, en la literatura, se han
planteado modelos dindmicos simplificados. Uno de
estos es el Exponential Recovery Load (ERL), el cual es
aplicado en escenarios donde la carga se recupera de
forma exponencial luego de un cambio repentino en la
tension [4], [5].

El proceso de identificacion paramétrica del modelo
ERL ha sido abordado en varios trabajos. En [8] se
resuelve ¢l problema de optimizacion del proceso de
identificacion paramétrica con el método de optimizacion
Trust-region-reflective. En [9] y [10] se menciona
minimo cuadrados no lineales, pero no se indica el
algoritmo de solucion. En [11] se compara Least-Squares
(LS), Genetic Algorithm (GA) y Simulated Annealing
(SA), donde recomienda el primero, aunque no indica el
algoritmo de solucion. En [12] se utiliza Levenberg-
marquardt y en [13] Genetic Algorithm. Ademas,
ninguno de los trabajos precitados determina las
caracteristicas minimas que deben contener las
mediciones con el objeto de lograr estimar con suficiente
precision los parametros del modelo de carga ERL.

Con base en el analisis precitado del estado del arte,
se encuentran las siguientes areas que requieren mayor
investigacion y que son objeto de este trabajo:

e Evaluar el desempeiio de diferentes algoritmos de
optimizacion en la estimacion paramétrica del
modelo de carga ERL, de manera que se
determine el que mejor desempefio alcance y sea
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idoneo para esta aplicacion, considerando la
tendencia actual de que los procesos de
identificaciéon  paramétrica tienden a ser
automaticos y en linea [14]. En esta evaluacion es
importante considerar el ruido contenido en las
mediciones sincrofasoriales, pues el objetivo es
determinar el mejor algoritmo de optimizacion
para ser utilizado en entornos practicos.

Establecer las variaciones de tension minimas
requeridas para lograr estimar los pardmetros del
modelo ERL con suficiente precision [14], de
manera que se puedan utilizar las metodologias de
identificacion paramétrica con mediciones
sincrofasoriales reales.

Determinar si el ruido contenido en las
mediciones sincrofasoriales reduce el desempefio
de los procesos de identificacién paramétrica del
modelo de carga ERL, pues en [15], [16] se
concluye que el ruido tiene un impacto negativo
en la estimacion paramétrica del modelo de carga
ZIP.

Con el propdsito de alcanzar los objetivos planteados,
este trabajo se estructura de la siguiente manera: la
seccion 2 presenta el marco tedrico que sustenta este
estudio; la seccion 3 plantea la metodologia utilizada para
evaluar el desempefio de distintos algoritmos de
optimizacion en el modelamiento de carga; la seccion 4
presenta los resultados obtenidos a partir de las
simulaciones y analisis realizados y; la seccion 5 recoge
las conclusiones de esta investigacion.

2. MARCO TEORICO
2.1  Modelo Exponential Recovery Load (ERL)

El modelo de carga investigado en este trabajo es el
modelo Exponential Recovery Load (ERL), el cual se
define en las ecuaciones (1) y (2) para la potencia activa
y, tal como se observa, es un modelo diferencial de
primer orden [8].

ac

dP. v

TPE-'.Pr:PS(V)_P[(V):PO(VKO) S_Po(V_o) 1
V%
P1=Pr+P0(_) (2)
Vo

Donde: V; es la tension inicial, V es la tension medida
por ejemplo por una PMU, T,, es una constante de tiempo
de recuperacion de la potencia activa, P, es la potencia
activa de recuperacion (es una funcion de V), P, es la
potencia activa inicial, P; es la potencia activa consumida
por la carga (variable de salida), a; es un parametro para
potencia activa en estado estable y, a; es un parametro
para potencia activa transitoria.

Ecuaciones analogas a (1) y (2) se utilizan para el
modelo ERL de potencia reactiva.
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2.2 Identificacion Paramétrica del Modelo ERL

El proceso de identificacion paramétrica tiene como
objetivo estimar los tres parametros del modelo ERL de
potencia activa y los tres parametros del modelo ERL de
potencia reactiva, de manera que una vez ajustados, el
modelo reproduzca fielmente el comportamiento real de
las cargas.

Para el modelo ERL de potencia activa, la idea es
encontrar los valores de los parametros Ty, a5 y a; que
minimicen la funciéon objetivo (3), pero sujeto a las
restricciones (4) y (5) [11]. Un proceso analogo se repite
para los tres parametros que definen el modelo ERL de
potencia reactiva, con las mismas restricciones (4) y (5).

min | (P = Puea;)’ 3)
)

lb=[0 0.63 0.05] 4)
ub=1[24 18 5] (5)

Donde: P; es la potencia calculada con el modelo de
carga ERL, P4 es la potencia efectivamente medida
por una PMU, n es la cantidad de muestras de las
mediciones. [b y ub de (4) y (5) son los limites inferiores
y superiores, respectivamente, y su orden es: Ty, &5 y @;.

Los limites superiores (ub) ¢ inferiores (Ib) de (4) y
(5) han sido establecidos de acuerdo con los valores
recomendados en [8]-[13].

2.3 Algoritmos de Optimizaciéon

Los procesos de identificacion paramétrica tienen
como base un problema de optimizacion que se resuelve
mediante un algoritmo de optimizacion. En la literatura
existe un gran nimero de estos algoritmos, sin embargo,
en este trabajo se compara ¢l desempefio de los 10
algoritmos mostrados en la Tabla 1, pues son los mas
utilizados en la literatura en el modelamiento de carga
[14].

Tabla 1: Algoritmos de Optimizacioén Utilizados en este Trabajo.

N.° Método de Optimizacion
M1 Trust-region-reflective
M2 Levenberg-marquardt
M3 Interior-point

M4 SQP

M5 Active-set

M6 Pattern search

M7 Genetic algorithm

M8 Particle swarm optimization
M9 Simulated annealing algorithm
MI10 Differential evolution

De manera general, los algoritmos de optimizacion se
clasifican en tradicionales y heuristicos. Los
tradicionales son utilizados para encontrar minimos
locales en la funcion objetivo, mientras los heuristicos se
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enfocan en minimos globales, sin embargo, estos tltimos
requieren un mayor poder de calculo, mayor tiempo de
ejecucion y, suelen alcanzar una menor precision, pero
generalmente suficiente. Dado que los algoritmos de
optimizacion se encuentran bien documentados en la
literatura, no se los detalla en este trabajo. Ademas, se
encuentran ampliamente implementados en programas
de uso comercial y gratuitos, como MATLAB y Python.
Para profundizar en las caracteristicas de estos
algoritmos se recomienda referirse a [17], sin embargo,
es importante mencionar que los 10 algoritmos
presentados en la Tabla 1 tienen la capacidad de manejar
restricciones de limites superiores ¢ inferiores, como los
definidos en este problema de optimizaciéon en las
ecuaciones (4) y (5).

3. METODOLOGIA

La metodologia para evaluar diferentes métodos de
optimizacion en la estimacion paramétrica del modelo de
carga ERL se sintetiza en el diagrama de flujo de la Fig.
1. Cada una de las ctapas mostradas en esta figura se¢
detallan a continuacion:

Generacion de Mediciones
Sincrofasoriales Sintéticas

Y

Adicion de Ruido

l

Evaluacién del desempeiio
de Métodos de Optimizacion

l

Definicién del Algoritmo
de Identificaciéon
Paramétrica del mode ERL

Figura 1: Diagrama de Flujo de la Metodologia para Evaluar
Diferentes Métodos de Optimizacion en la Estimaciéon
Paramétrica del Modelo de Carga ERL.

3.1 Generacion de Mediciones Sincrofasoriales

Sintéticas

Con el fin de comparar el desempeio de diversos
algoritmos de optimizacion, resulta indispensable
realizar pruebas controladas a nivel de laboratorio. Para
ello, se emplean mediciones sincrofasoriales sintéticas
generadas mediante simulaciones computacionales. Para
esto se plantea el siguiente proceso:

e Elegir un sistema de prueba de los de la literatura.
Configurar las cargas de este sistema para que se
comporten conforme el modelo de carga ERL.

e Mediante Monte Carlo generar diversos Yy
suficientes escenarios de operacion donde varie la
demanda del sistema, mediante la seleccion




Edicion No. 22, Issue II, Enero 2026

aleatoria, con funcion de densidad uniforme, de la
hora del dia, y tomar de esta hora la demanda de
diferentes curvas tipicas de demanda, como
residencial, comercial e industrial.

Ejecutar, para cada escenario, un flujo éptimo de
potencia con el fin de determinar el despacho de
cada generador. En caso de requerir, puede
realizarse previamente un proceso de Unit
Commitment, sin embargo, este no incide
directamente en los objetivos de la presente
investigacion, por lo que no se considera en el
analisis principal.

Mediante Montecarlo generar eventos para cada
escenario de operacion, como fallas, variaciones
de carga, cambio en los TAP de los
transformadores, entre otros, con funcién de
densidad uniforme. Para las variaciones de la
carga se pueden utilizar funciones de densidad
con mayor probabilidad de cambios menores en la
demanda.

Ejecutar simulaciones en el dominio fasorial
(RMS).

Guardar las simulaciones de tension, potencia
activa y reactiva de las barras de carga del sistema,
con una tasa de muestreo igual a como lo haria una
PMU instalada en dicha barra. Para este trabajo se
ha elegido igual a la frecuencia de la red, es decir,
50 0 60 FPS. Las tasas de muestreo de las PMU se
pueden consultar en [6].

Finalmente, afladir ruido blanco Gaussiano con
los valores de SNR (signal-to-noise ratio)
mostrados en (6), de manera que las mediciones
sintéticas sean similares a las reales [16].

SNR(V P Q)= (73 65 49)dB 6)

3.2 Indicadores de Desempeiio

El proceso de identificacion paramétrica, descrito en
la seccion 2.2, se ejecuta para cada barra de carga del
sistema de prueba, para cada escenario de operacion, y
con cada uno de los diez algoritmos de optimizacion de
la Tabla 1. Con el objeto de comparar el desempeiio de
cada uno de estos algoritmos se utilizan los siguientes
cuatro indicadores, los cuales son planteados en [14].

3.2.1 Tiempo de ejecucion

Este indicador cuantifica el tiempo que tarda un
algoritmo de optimizacion en encontrar una solucion
viable, es decir, que minimice la funcién objetivo y que
cumpla con las restricciones. Para que un algoritmo sea
adecuado para una metodologia de modelamiento de
carga automatice y en linea, el objetivo es que este tiempo
esté en el orden de unas cuantas decenas de segundo [2].
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3.2.2  Cantidad de soluciones viables (CSV)

El indicador CSV representa el porcentaje de
escenarios en los que un algoritmo de optimizacion logra
encontrar una solucion viable, es decir, minimizar la
funcion objetivo satisfaciendo las restricciones.

3.2.3  Error en la estimacion de parametros (EEP)

El indicador EEP permite cuantificar el error (en
porcentaje) asociado a la estimacion de los tres
parametros que definen al modelo ERL. Este indicar se
calcula por separado para los modelos ERL de potencia
activa y reactiva, y se define como sigue:

EEP = promedio <—|me:;5_—1 ;’I‘ ') x 100 7
Donde: Preates Y Pestimados SON Vectores que

contienen los tres parametros reales y estimados,
respectivamente, del modelo de carga ERL. Los limites
inferiores (Ib) y superiores (ub) son los mostrados en (4)

y (5).

Cabe destacar que el indicador EEP no es aplicable
en entornos reales, dado que los valores verdaderos de los
parametros del modelo ERL no son conocidos. A pesar
de esto, su utilidad radica en el contexto de simulacion,
donde permite comparar objetivamente ¢l desempefio de
distintos algoritmos de optimizacion.

3.2.4  Error cuadrdatico medio estandarizado

(RMSE »p)

Este indicador estd enfocado especificamente para
comparar el desempefio de diferentes métodos de
optimizacion en el modelamiento de carga y se basa en el
conocido Error Cuadratico Medio, pero estandarizado
con respecto a la magnitud de variacion de la potencia
(AP), tal como se observa a continuacion:

?:1 (Pi _ Pmedz)z
n

AP

Donde: P_i, P med y n se definen de forma similar
que para (3) y, AP es la magnitud de variacion de potencia
(activa o reactiva) que se calcula como la diferencia entre
el valor maximo y minimo que alcanza la potencia en la
ventana de tiempo a utilizar.Evaluacion del Desempeifio
de los Algoritmos de Optimizacion

®)

RMSEp =

El desempeiio de los algoritmos de optimizacion para
la estimacion de los parametros del modelo ERL se
evalla y compara mediante los cuatro indicadores
previamente definidos y al utilizar tres tipos de
mediciones sincrofasoriales: sin ruido, con ruido, y
filtradas (sefales con ruido sometidas a una etapa de
filtrado). El objetivo es verificar que los algoritmos de
optimizaciéon mantengan un rendimiento adecuado con
estos tres tipos de sefales, ya que en [14] se observa que
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ciertos algoritmos no son robustos frente al ruido (las
mediciones sincrofasoriales contienen ruido en el mundo
real).

Adicionalmente, se recomienda que los indicadores,
exceptuando el tiempo de ejecucion, sean analizados en
funcion de la magnitud de variacion de tension (AV). En
particular, resulta critico observar el comportamiento de
los algoritmos ante datos tipo ambiente (AV < 0.03 PU)
de PMU, pues son los mas comunes y disponibles en los
sistemas eléctricos reales.

3.3  Determinacién del Algoritmo de Identificacion

Paramétrica del Modelo de Carga ERL

Tal como se observa en la Fig. 1, y una vez definido
el mejor método de optimizacion para estimar los
parametros del modelo de carga ERL, la ultima ctapa
consiste en determinar el algoritmo de identificacion
paramétrica para este modelo. Para esto es necesario:
definir los requisitos minimos en las mediciones
sincrofasoriales, en lo que respecta a la minima variacion
de tension que es necesaria para asegurar con gran
probabilidad que los parametros estimados del modelo
ERL son precisos y; los valores de RMSE,p que indiquen
con gran probabilidad que el modelo fue estimado con
suficiente precision.

4. RESULTADOS

4.1 Sistema de Prueba

Para el desarrollo de este trabajo se ha seleccionado y
empleado como sistema de prueba el modelo IEEE de 39
barras implementado en PowerFactory, no obstante, de
acuerdo con la metodologia planteada en la seccion 3.1,
se han realizado las siguientes adaptaciones:

e Las 19 cargas que conforman este sistema han
sido configuradas para que se comporten segtn el
modelo ERL, sin embargo, dado que el modelo
ERL no estd disponible de forma nativa en
PowerFactory, se lo ha programado en lenguaje
DSL (DIgSILENT Simulation Language).

Con base en Monte Carlo se han construido 11 mil
diferentes escenarios de operacion y en cada uno
de ellos se varia de forma aleatoria: los pardmetros
de los modelos ERL de cada una de las cargas de
acuerdo con los valores recomendados en [8]-
[13]; la demanda de cada carga de acuerdo con la
seleccion aleatoria de la potencia consumida, a
cierta hora del dia, de una curva de demanda, sea
residencial, comercial o industrial. Todo esto se
realiza con programacion DPL (DIgSILENT
Programming Language).

Se ejecuta un flujo 6ptimo de potencia (OPF) para
obtener el despacho econdémico de cada
generador. No se realizd un proceso previo de
Unit Commitment, por lo que todos los
generadores estuvieron disponibles para el OPF.
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Se asigna de forma aleatoria a cada escenario de
operacion un evento. Los eventos pueden ser:
cambio en el TAP de un transformador, variaciéon
con magnitud aleatoria de la demanda de una
carga, falla en una linea de transmisiéon a una
distancia aleatoria, o salida aleatoria de un
generador.

Para cada escenario se realizan 10 segundos de
simulaciones dindmicas del tipo fasorial (RMS).

En archivos planos se guardan las simulaciones,
especificamente las variables de tension, potencia
activa y potencia reactiva. La tasa de muestreo es
de 60 FPS.

Se agrega ruido con los valores de SNR de (6).

A partir de lo descrito previamente, se han simulado
los escenarios de operacion y se han almacenado las
correspondientes mediciones sincrofasoriales sintéticas.
La cantidad de registros, agrupados por magnitud de
variacion de tension (AV), se presentan en la Fig. 2. La
cantidad minima de registros en las barras de la Fig. 2 es
de 86, y se da para AV entre 0.13 y 0.14 pu.

Finalmente, para evitar sesgos en los resultados de los
procesos de identificacion paramétrica derivados de una
distribucion desigual en la cantidad de registros por
magnitud de variacion de tension (AV), se ha establecido
un limite uniforme de 86 registros para cada rango
mostrado en la Fig. 2. De esta manera, dado que se tienen
63 barras en la Fig. 2, se obtiene un total de 63x87 =
5481 registros.

25 10

- o )
T T T

Numero de registros

o
n
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130141 i
10°

Figura 2: Cantidad de Escenarios por Magnitud de Variaciéon de

Tension.
4.2  Evaluacion del desempeiio de los Algoritmos
de Optimizacion
4.2.1 Tiempo de ejecucion

La Fig. 3 presenta los tiempos de ejecucion asociados
a la estimacion del modelo ERL de potencia reactiva,
utilizando mediciones sincrofasoriales filtradas. Esta
figura contiene diez diagramas de caja, correspondientes
a los diez algoritmos de optimizacion enumerados en la
Tabla 1, manteniendo el mismo orden de presentacion.
La eleccion de diagramas de caja responde a la necesidad
de representar la distribucion estadistica del tiempo de
ejecucion calculado para los 5481 registros obtenidos del
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sistema de prueba.

Al analizar la Fig. 3 se concluye que los tiempos de
ejecucion asociados a la estimacion del modelo ERL son
reducidos en la mayoria de los casos, con excepcion de
los algoritmos Genetic Algorithm y Simulated annealing,
que presentan una carga computacional
significativamente mayor. Este comportamiento sugiere
que, salvo los dos algoritmos precitados, los restantes son
adecuados para su implementaciébn en esquemas de
identificacion paramétrica automaticos y en linea del
modelo ERL, tal como se requiere en aplicaciones
modernas de los sistemas eléctricos.

Por ultimo, cabe sefialar que los tiempos obtenidos
para la estimacioén del modelo ERL de potencia activa,
asi como al utilizar sefiales con o sin ruido, son idénticos
a los de la Fig. 3.

10— T T T T T

T & &

S B

4 5 6 7
Algoritmos de Optimizacion

2

Figura 3: Tiempo de Ejecucién de 10 Algoritmos de Optimizacién.
4.2.2  Cantidad de Soluciones Viables (CSV)

La Fig. 4 presenta los valores del indicador CSV
obtenidos para cada uno de los diez algoritmos de
optimizacion, clasificados segin la magnitud de
variacion de tension (AV). Estos resultados corresponden
a la estimacion de los modelos ERL de potencia activa,
aunque los valores alcanzados para el modelo de potencia
reactiva (Q) son muy similares.

En la Fig. 4 se muestra la comparacion del desempefio
de los algoritmos bajo dos condiciones: al utilizar
mediciones sincrofasoriales sin ruido, Fig. 4 a), y al
emplear mediciones con ruido més una etapa de filtrado,
Fig. 4 b).

Al analizar conjuntamente las graficas a) y b) de la
Fig.4 se concluye lo siguiente:

e El algoritmo Active-set es el que menor
desempeifio alcanza, por lo que no se recomienda
su utilizaciéon en la estimacion paramétrica del
modelo ERL.

Todos los algoritmos, salvo Active-set, presentan
un desempefio ideal al emplear mediciones sin
ruido. Por el contrario, al utilizar sefiales filtradas
(en el mundo real las mediciones sincrofasoriales
tienen ruido y se las filtra), su desempefio se
reduce considerablemente, sobre todo para datos
tipo ambiente de PMU (mediciones con AV
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menores a 0.03 pu [14]), que vale aclarar, son los
de mayor disponibilidad en un sistema eléctrico.

Al emplear sefales filtradas, Fig. 4 b), los
algoritmos Simulated annealing y Differential
evolution presentan un desempefio menor a los
otros algoritmos, por lo que se concluye que no
son los mas adecuados para esta aplicacion.

Los algoritmos Trust-region-reflective,
Levenberg-marquardt, Interior-point y SQP, hasta
este punto del andlisis, son los mas adecuados
para esta aplicacion. Pattern search y Genetic
algorithm, aunque tienen un desempefio similar a
los otros algoritmos en la Fig. 4 b), requieren de
considerables mayores recursos computacionales,
tal como se observa en la Fig. 3.

4.2.3  Error en la Estimacion de Parametros (EEP)

La Fig. 5 presenta la media del EEP obtenido para
cada uno de los diez algoritmos de optimizacion,
clasificados segun la magnitud de variacion de tension
(AV). Estos resultados corresponden a la estimacion de
los modelos ERL de potencia reactiva, aunque los valores
alcanzados para el modelo de potencia activa (P) son
similares.

EnlaFig. 5 se muestra la comparacion del desempeiio
de los algoritmos bajo dos condiciones: al utilizar
mediciones sincrofasoriales sin ruido, Fig. 5 a), y al
emplear mediciones con ruido mas una etapa de filtrado,
Fig. 5b).

Al analizar conjuntamente las graficas a) y b) de la
Fig. 5 se obtienen las mismas conclusiones que para el
indicador anterior (CSV), donde, en resumen, se

recomienda utilizar cualquiera de los siguientes

algoritmos: Trust-region-reflective, Levenberg-

marquardt, Interior-point o SQP.

4.2.4  Error Cuadrdtico Medio Estandarizado
(RMSE »p)

En la Fig. 6 se presenta la media del indicador
RMSE,p, clasificado por magnitud de variacion de
tension (AV), al estimar ¢l modelo ERL de potencia
activa con mediciones sincrofasoriales filtradas. Una
figura similar se obtiene para el modelo ERL de potencia
reactiva.

Al analizar la Fig. 6 se observa que todos los
algoritmos alcanzan RMSE,p similares, por lo cual, con
base en este indicador, no se puede elegir un algoritmo
por sobre otro. Este particular es un gran aporte al estado
del arte, pues los pocos trabajos que comparan el
desempenio de diferentes algoritmos de optimizacion en
el modelamiento de carga utilizan como indicador el
Error Cuadratico Medio (RMSE), sin embargo, en este
trabajo se demuestra que los algoritmos, aunque alcanza
los mismos valores de RMSE, no tienen el mismo
desempefio. Como solucion a este problema, justamente
se debe investigar el mejor algoritmo de optimizacion
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4.3  Algoritmo de Identificacion Paramétrica del

Modelo de Carga ERL

De la seccidn anterior se concluye que los algoritmos
que alcanzan el mejor desempefio para la estimacion de
los parametros del modelo ERL son Trust-region-
reflective, Levenberg-marquardt, Interior-point y SQP.
De estos se podria elegir utilizar cualquiera de ellos.

Una vez escogido uno de estos métodos, y con el fin
de proponer un algoritmo de identificacion paramétrica,
es necesario determinar las caracteristicas minimas que
deben contener las mediciones sincrofasoriales con el
objeto de lograr estimar con precision los parametros de
los modelos ERL. Para esto se analiza la Fig. 4 b), en la
cual se observa que a partir con AV > 0.003 pu se logra
estimar el modelo ERL en el 90% de escenarios. Este es
un aporte al estado del arte, pues en ningun trabajo se
determina este valor.
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Por otro lado, otro tema que se debe definir para
proponer un algoritmo de identificacion paramétrica es el
valor del indicador RMSE,p bajo el cual se indique con
gran probabilidad que el modelo ERL fue estimado con
una precision suficiente. Esto se da puesto que en el
mundo real no se puede calcular el indicador EEP, pero
si el RMSE,p. Para esto, en la Fig. 7 a) se presenta la
relacion entre el RMSExp y el EEP, clasificado por
rangos de RMSE,p, para ¢l algoritmo de optimizacion
Trust-region-reflective. Graficas muy similares a la Fig.
7 a) se obtienen para los algoritmos Interior-point y SQP.
Por el contrario, para el algoritmo Levenberg-marquardt,
esta relacion entre RMSExp y EEP se presenta en la Fig.
7D).

Al analizar las dos Fig. 6 se observa claramente que
el limite que se debe definir para el indicador RMSE,p ¢s
0.03, pues para valores superiores los EEP alcanzados
crecen considerablemente.

Por otro lado, un tema bastante particular al comparar
la dos Fig. 6 es que, para un RMSE,p de 0.03, la Fig. 7 a)
alcanza menores EEP. Esto quiere decir que los
algoritmos de optimizacion Trust-region-reflective,
Interior-point y SQP tienen un desempefio superior a
Levenberg-marquardt. Esto es un aporte al estado del
arte, pues el algoritmo Levenberg-marquardt es uno de
los mas utilizados en el modelamiento de carga, sin
embargo, en esta investigacion se demuestra que existen
otros algoritmos que alcanzan mejores desempefios.

A partir de los resultados previamente obtenidos, se
establece el siguiente algoritmo de identificacion
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paramétrica para el modelo de carga ERL:

1. Recepcion de datos: se reciben mediciones
sincrofasoriales correspondientes a una barra de
carga y con una duracion de 10 segundos.

2. Preprocesamiento de datos: las mediciones se
someten a una etapa de filtrado o suavizado de
datos para reducir la influencia del ruido.

3. Verificacion de variacion de tension: se
comprueba que la magnitud de variacion de
tension (AV) sea superior a 0.003 pu.

e Si AV<0.003pu se descarta la serie
temporal y se espera por un nuevo conjunto
de datos desde el paso 1.

e Si AV >0.003pu, se¢ continua con el
siguiente paso.

4. Identificaciéon paramétrica: se ejecuta el
proceso de identificacion paramétrica definido
en la seccion 2.2, utilizando uno de los siguientes

algoritmos:  Trust-region-reflective, Interior-
point o SQP.

5. Evaluaciéon de la precisién: se calcula el
indicador RMSE »p.

e Si RMSE,p <0.03, se considera que los
parametros del modelo ERL han sido
estimados correctamente.

e Si RMSE,p > 0.03, sc considera que el
modelo ERL ha sido estimado con
insuficiente precision, por lo que se descartan
los resultados y se espera por un nuevo
conjunto de datos desde el paso 1.

6. Reinicio del algoritmo: se vuelve al paso 1 y se
espera por la recepcion de un nuevo conjunto de
datos.

5. CONCLUSIONES Y TRABAJOS FUTUROS

En este trabajo se ha desarrollado un algoritmo de
identificacion paramétrica para el modelo de carga ERL,
orientando su aplicacion para metodologias automaticas
y en linea que utilicen mediciones sincrofasoriales. Para
ello, se ha llevado a cabo una evaluacién comparativa de

diez algoritmos de optimizacion, y se ha determinado que
tres algoritmos alcanzan los mejores desempefios: Trust-
region-reflective, Interior-point y SQP.

Asimismo, se ha establecido la magnitud minima de
variacion de tension requerida en las mediciones
sincrofasoriales para garantizar con gran probabilidad
una estimacion confiable del modelo ERL. Finalmente,
se ha determinado el valor limite del indicador RMSEp,
el cual permite inferir, con alta probabilidad, que el
modelo ERL ha sido estimado con suficiente precision.

Ademas de lo anterior, s¢ ha demostrado que el
algoritmo de optimizacion Levenberg-marquardt, que es
uno de los més utilizados en ¢l modelamiento de carga,
no es ¢l que alcanza los mejores resultados. Trust-region-
reflective, Interior-point y SQP obtienen un desempefio
superior.

Como trabajos futuros se plantea evaluar el algoritmo
planteado en este trabajo con mediciones sincrofasoriales
obtenidas de sistemas eléctricos reales.
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