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Abstract

Currently, accurately modeling loads, representing their
dynamic behavior, and capturing variations in load
model parameters over time is a fundamental issue. To
this end, synchrophasor measurements, automatic and
online load modeling methodologies, and new dynamic
load models are used today. Recently, a research project
has proposed the Oscillatory Component Load (OCL)
model, which has the advantage of representing not only
the static and exponential recovery behavior of loads,
but also their oscillatory behavior. In this regard, the
parametric identification process of this OCL model has
not been investigated in depth, therefore this work does
so, from determining the best optimization method for
the parametric identification process to determining the
characteristics that synchrophasor measurements must
contain to obtain accurate OCL models.

Index terms—ILoad Modeling, OCL, Oscillatory
Component Load Model, Parametric Identification,
PMU, Synchrophasor.
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Resumen

Actualmente modelar adecuadamente las cargas,
representar su comportamiento dinamico y capturar las
variaciones de los parametros de los modelos de carga
en el tiempo es un tema fundamental. Para esto hoy en
dia se utilizan mediciones  sincrofasoriales,
metodologias de modelamiento de carga automaticas y
en linea y, nuevos modelos de carga dinamicos. En el
ultimo tiempo en un trabajo de investigacion se ha
planteado el Oscillatory Component Load Model
(OCL), el cual tiene como aporte que permite
representar no solamente el comportamiento estatico y
exponencial de recuperacion de las cargas, sino también
el comportamiento oscilatorio. En este sentido, el
proceso de identificacion paramétrica de este modelo
OCL no ha sido investigado a profundidad, por lo que
se lo realiza en este trabajo, desde determinar el mejor
método de optimizacion para el proceso de
identificacion paramétrica, hasta las caracteristicas que
deben contener las mediciones sincrofasoriales para
obtener modelos de carga OCL precisos.

Palabras clave— Modelamiento de carga, OCL,
Oscillatory Component Load Model, Identificacion
Paramétrica, PMU, sincrofasor.
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1. INTRODUCCION

Los sistemas eléctricos de potencia operan cada vez
mas cerca de sus limites de estabilidad debido,
principalmente, al crecimiento de la demanda y a la
inclusion de centrales de generacion con energias
renovables.  Esta  situacion conlleva a que
progresivamente se deban realizar simulaciones mas
precisas, sobre todo en estado dinamico, para lo cual es
necesario tener modelos validados de los componentes
que conforman un sistema eléctrico [1]. Dentro de estos
componentes, la carga es uno de los elementos mas
desafiantes de estimar, pues sus modelos varian
continuamente con el tiempo [2], [3], a diferencia de, por
ejemplo, las lineas de transmision, cuyo modelo no
cambia con el tiempo.

Ademas de lo anterior, representar adecuadamente la
dinadmica de las cargas es fundamental. Un claro ejemplo
se muestra en la Figura 1 (tomada de [4]), la cual
representa un apagon (black-out) ocurrido el 10 de agosto
de 1996 en el sistema “Western Systems Coordinating
Council (WSCC)” de EEUU, especificamente en la
interconexion California-Oregon (COI) [4]. En la Figura
1 a) se muestra las mediciones reales de las oscilaciones
de potencia. En la Figura 1 b) la respuesta simulada con
un caso de estudio base. En la Figura 1 c) se observa la
respuesta del sistema una vez realizado un proceso de
validacién a los modelos eléctricos de varios elementos
de la red, entre ellos al modelo de la carga al cual se le
anadi6 varias cargas estaticas y, la dinamica de los
motores de induccion de los aires acondicionados. Este
ejemplo permite resaltar la importancia de modelar
adecuadamente el comportamiento estatico y dinamico
de las cargas.

Con base en lo anterior, para lograr capturar la
dinamica de las cargas es necesario contar con sistemas
de medicion que lo permitan [5]. Las mediciones
sincrofasoriales provenientes de Unidades de Medicion

a) Actual COI Power

Fasorial (PMU) son idoneas [2], [3], pues una de sus
principales ventajas es que reportan hasta 50 o 60 fasores
por segundo (FPS, frames per second) [6], lo cual
permite capturar la dindmica de los sistemas y, por ende,
estimar los parametros de los modelos de carga
dindmicos.

Por otro lado, para representar el comportamiento
dindmico de las cargas existen varios modelos. El
primero y mas conocido es el modelo dinamico de un
motor de induccidn, sin embargo, este tiene varios
parametros por determinar, ademas de ser complejo [2],
[3]. Como solucion, en la literatura se ha planteado el
modelo Exponential Recovery load (ERL), el cual es
aplicado en escenarios donde la carga se recupera de
forma exponencial luego de un cambio repentino en la
tension. Varios estudios como [3], [7], [8] abordan este
modelo, sin embargo, tiene como inconveniente que no
puede representar el componente oscilatorio de las
cargas. Ante esto, en [9] se plantea un nuevo modelo
llamado Oscillatory Component Load Model (OCL), el
cual es deducido de una ecuacion diferencial de segundo
orden que contempla tres componentes: uno estatico, uno
de recuperacion exponencial y, uno de oscilaciones
amortiguadas, siendo este ultimo el aporte y ventaja de
este modelo. Por otro lado, el proceso de identificacion
paramétrica planteado en [9] se basa en minimizar una
funcién objetivo en base a minimos cuadrados, que
compara las mediciones de potencia reales frente a las
mediciones estimadas por el modelo OCL, y se lo
resuelve con la técnica de optimizacion Levenberg-
Marquardt.

Con base en lo anterior, y dado que el modelo OCL
ha sido estudiando unicamente en [9], se encuentran las
siguientes areas por investigar:

e Determinar el mejor algoritmo de optimizacién
para minimizar la funcién objetivo del proceso de

b) Simulated COI Power (WSCC base case)
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Figura 1: Ejemplo de un Apagén en el Sistema WSCC. a) Mediciones Reales. b) Simulacién con el Caso Base. Fuente [4].
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identificacion paramétrica del modelo OCL con
mediciones sincrofasoriales, pues en la literatura
se utilizan varios, como los mostrados en la Tabla
1 [10].

Establecer las caracteristicas minimas
recomendables en las mediciones sincrofasoriales
para lograr estimar con precision los pardmetros
del modelo de carga OCL [10].

Evaluar el impacto que tiene el ruido de las
mediciones sincrofasoriales en la estimacion del
modelo de carga OCL, pues en [11], [12] se
demuestra que el ruido tiene un impacto
significativo y negativo en la estimacion
paramétrica de otros modelos de carga.

Justamente las areas por investigar mencionadas
anteriormente son las que se abordan en este trabajo. En
este sentido, para cumplir con estos objetivos, este
documento se organiza de la siguiente manera: en la
segunda seccion se describe el marco teodrico; en la
tercera seccion se presenta la metodologia utilizada para
evaluar diferentes técnicas de optimizacion; en la cuarta
seccion se obtienen los resultados y; en la quinta seccion
se presentan las conclusiones.

2. MARCO TEORICO

2.1 Modelamiento de Carga

El modelamiento de carga es una tarea que permite
determinar un modelo matematico que represente
adecuadamente el funcionamiento de las cargas de un
sistema eléctrico en diferentes estudios o aplicaciones. El
modelamiento de carga abarca dos etapas: la eleccion de
un modelo de carga y, la estimacion de los valores de los
parametros del modelo elegido [13]. En este trabajo se
aborda al modelo de carga OCL, por lo que se lo define a
continuacion:

2.1.1 Modelo de carga oscillatory component load

(OCL)

El modelo Oscillatory Component Load Model
(OCL) se deriva de una ecuacion diferencial de segundo
orden que considera tres tipos de componentes llamados:
estatico, recuperacion exponencial y oscilaciones
amortiguadas. Este modelo ha sido planteado en la
literatura en [9], donde las ecuaciones (1) a (3) son para
potencia activa, y (4) a (6) para potencia reactiva [9].

Pa(t) = V() + Kpeap Xpexp () + Kpose Xpose (£) (1)
r, @ = T0 &
i P L S e 2. )
Ga(t) = V92(8) + KexpXau, (8) + KooxXguue (O )
o LQ;"@ + X () = dzgt) 5)
0O, 00020 s o = O (6)
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Donde:

® apy @, son constantes que cuantifican la

componente estatica exponencial.

Xpexp Y Xgexp SOn variables de estado
correspondiente a la recuperacion exponencial.

Xposc Y Xqosc Son variables de estado
correspondiente a la componente oscilatoria.

Kpexp Y Kposc representan las proporciones o
pesos de la componente de recuperacion
exponencial y oscilatoria, respectivamente, para
el modelo de potencia activa.

Kgexp Y Kgosc representan las proporciones o
pesos de la componente de recuperacion
exponencial y oscilatoria, respectivamente, para
el modelo de potencia reactiva.

Tp y T son constantes de tiempo exponenciales.

Bp v Bg son factores de amortiguamiento.

® wop Y Wyq €s la frecuencia natural.

2.1.2  Identificacion paramétrica del modelo OCL

La identificacion paramétrica es un proceso que
determina el valor de los pardmetros de un modelo de
carga de modo que, cuando se ajustan estos parametros,
los modelos de carga reproducen fielmente el
comportamiento real de las cargas.

Para el caso del modelo OCL, la idea es determinar
los 6 parametros que definen el modelo OCL de potencia
activa (@p, Kpexp> Kposcs Tp, PBp, Wop), mediante la
minimizacion de la funciéon objetivo (7), sujeto a
restricciones de limites superior e inferior para estos 6
parametros. Un proceso analogo se repite para los 6
parametros que definen el modelo OCL de potencia

reactiva.
n
2
Z (Pi - Pmedi)
i=1

Donde: P; es la potencia estimada con el modelo de
carga OCL, P4 es la potencia medida por una PMU, y
n es la cantidad de muestras de la serie temporal. Por
ejemplo, para 10 segundos de mediciones de una PMU
con 60 FPS, n = 600.

min

()

Los limites superiores (ub) ¢ inferiores (Ib) para los
seis parametros del modelo OCL de potencia activa se
presentan en (8) y (9), y para el modelo de potencia
reactiva en (10) y (11). Estos limites han sido obtenidos
de los valores recomendados en [9].

lbp =[0.01 0.004 —41 0.019 0.15 4.94] ()
ubp, =[0.16 028 57 53 1 25] )
lbg =[0.01 —0034 —19 061 0097 48] (10)
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ubp =[47 18 216 7.1 1 256]

(11
Donde el orden de los pardmetros es: @p, Kpexp,
Kposcs Tps Bp Y Wop-

2.2  Métodos de Optimizacion

Para minimizar una funcion objetivo, en este caso la
mostrada en (7), es necesario aplicar un método de
optimizacion. En este trabajo se compara el desempefio
de diez métodos de optimizacion, los cuales se enlistan
en la Tabla 1.

Dado que los métodos de optimizacion se encuentran
ampliamente documentados en la literatura [14] e
implementados en programas comerciales o de codigo
abierto como MATLAB y Python, no se los desarrolla en
este trabajo. No obstante, es importante mencionar que,
de manera general, estos métodos pueden clasificarse en
deterministas  (tradicionales) y  heuristicos o
metaheuristicos. Los métodos deterministas pueden
garantizar la convergencia al optimo global unicamente
cuando la funcion objetivo es convexa; en problemas no
convexos, su desempefio depende de las condiciones
iniciales y pueden converger a 6ptimos locales. Por su
parte, los métodos heuristicos y metaheuristicos no
ofrecen garantias formales de optimalidad global, pero
emplean estrategias de exploracion mas amplias que les
permiten aproximarse a soluciones cercanas al dptimo
global, usualmente con un mayor costo computacional
[14]. Los primeros cinco métodos de la Tabla 1 son
tradicionales, mientras los restantes son heuristicos.

Tabla 1: Métodos de Optimizacion.

N.° Método de Optimizacion
M1 Trust-region-reflective
M2 Levenberg-marquardt
M3 Interior-point
M4 SQpP
M5 Active-set
M6 Pattern search
M7 Genetic algorithm
M8 Particle swarm optimization
M9 Simulated annealing algorithm
M10 Differential evolution

3. METODOLOGIA

La metodologia para evaluar diferentes métodos de
optimizacion en la estimacion paramétrica del modelo de
carga OCL se sintetiza en el diagrama de flujo de la
Figura 2. Cada una de las etapas mostradas en esta figura
se detallan a continuacion:
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Generacion de Mediciones
Sincrofasoriales Sintéticas

A

Adicién de Ruido

3

Evaluacion del desempeio
de Métodos de Optimizacion

3

Definicién del Algoritmo
de Identificacion
Paramétrica del modeloOCL

Figura 2: Diagrama de Flujo de la Metodologia para Evaluar
Diferentes Métodos de Optimizacion en la Estimacion
Paramétrica del Modelo de Carga OCL.

3.1 Generacion de Mediciones Sincrofasoriales

Sintéticas

Con el objeto de evaluar las diferentes técnicas de
optimizacion en el proceso de identificacion paramétrica
del modelo de carga OCL es necesario utilizar un sistema
de prueba, de manera que se generen mediciones
sincrofasoriales sintéticas de las barras de carga de dicho
sistema. Para esto se plantea seguir el siguiente proceso:

e Seleccionar un sistema de prueba.

Configurar las cargas para que su comportamiento
sea en base al modelo de carga OCL.

Mediante Monte Carlo generar una gran cantidad
de escenarios de operacion donde varie la
demanda del sistema y los pardmetros del modelo
OCL de carga.

Ejecutar flujos 6ptimos de potencia.

Mediante Monte Carlo generar eventos para cada
escenario de operacion, como variaciones en la
carga, cortocircuitos, fallas, cambio en los TAP de
los transformadores, entre otros.

Realizar simulaciones en el dominio fasorial
(RMS) para cada uno de estos escenarios.

Almacenar las simulaciones temporales de
tension, potencia activa y potencia reactiva, de
cada una de las barras de carga de dicho sistema,
y de manera idéntica a una PMU real, es decir, con
una tasa de reporte de 50 o 60 fasores por segundo
(FPS, frames per second).

Con el objeto de que las mediciones sintéticas
sean idénticas a las reales, se les afiade ruido
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blanco con los valores de SNR (dB) que se
detallan en (12), donde V, P y Q representan la
tension, potencia activa y potencia reactiva,
respectivamente [12].

SNR(V P Q)= (73 65 49)dB (12)
3.2 Indicadores de Desempeiio
Con las mediciones sincrofasoriales sintéticas

obtenidas del sistema de prueba se realiza el proceso de
identificacion paramétrica detallado en la seccion 2.1.2,
pero se repite con cada uno de los diez métodos de
optimizacion de la Tablal. Para comparar el desempefio
de cada uno de estos algoritmos se utilizan los siguientes
indicadores planteados en [10] que se reproducen a
continuacion.

3.2.1  Tiempo de ejecucion

El tiempo de ejecucion es el tiempo que tarda un
método en encontrar una soluciéon 6ptima. No incluye
tiempos de carga de datos, preprocesamiento,
almacenamiento de resultados, ni ningiin tiempo que no
sea exclusivamente el de minimizar la funcion objetivo.
Los tiempos de ejecucion deberian ser inferiores a unas
cuantas decenas de segundos, pues hoy en dia es una
tendencia estimar los parametros de los modelos de carga
continuamente en linea y de forma automatica [13].

3.2.2  Cantidad de soluciones viables (CSV)

La CSV es un indicador que calcula, en porcentaje, la
cantidad de escenarios en los que cada método de
optimizacion encuentra una solucion viable, es decir, que
minimice la funcién objetivo (7) y que cumpla las
restricciones presentadas en las ecuaciones (8) a (11).

3.2.3  Error en la estimacion de parametros (EEP)

El EEP es un indicador que cuantifica el error
alcanzado al estimar los 6 parametros del modelo OCL.
Para esto se calcula la media del error normalizado de los
6 parametros, tal como se observa a continuacion:

EEP = promedio (—|PcsmT:st_—l§|rcales l) % 100 (13)
Donde  Pregies Y Destimados SO vectores — que

contienen los parametros reales y estimados del modelo
de carga. En este caso, para el modelo OCL, preqies ¥
Destimados SON vectores de longitud seis, puesto que el
modelo OCL se define mediante seis parametros para el
modelo de potencia activa y otros seis parametros para el
de potencia reactiva.

Es importante notar que este indicador EEP no se
puede calcular en la practica ya que no se conocen los
parametros reales, no obstante, el objetivo de este
indicador es comparar diferentes métodos de
optimizacion en ambiente de simulacion.
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3.2.4  Error Cuadrdatico medio estandarizado

(RMSE »p)

La Raiz del Error Cuadratico Medio Normalizado es
un indicador planteado en [10] y estd enfocado
especificamente para comparar el desempefio de
diferentes métodos de optimizacion en el modelamiento
de carga. Su formulacion se presenta en (14).

?:1 (Pi - Pmedi)z
n

AP

Donde: P; es la potencia estimada con el modelo de
carga OCL, P,,.4 es la potencia medida por una PMU, n
es la cantidad de muestras de la serie temporal y, AP es
la magnitud de variacion de potencia (activa o reactiva)
en la serie temporal. La magnitud de variacion de
potencia (AP) se calcula en pu como la diferencia entre
el valor maximo y minimo que alcanza la potencia en la
ventana de tiempo a utilizar. Valga la aclaracion, este
indicador se calcula para el modelo OCL de potencia
activa y para el modelo de potencia reactiva.

33

(14)

RMSE,p =

Evaluaciéon del Desempeiio de los Métodos de

Optimizacion
En base a los cuatro indicadores precitados se evalua
y compara el desempeiio de los métodos de optimizacion
para estimar los parametros del modelo de carga OCL. Es
importante seflalar que esta evaluacion se realiza al
utilizar tres tipos de mediciones: sin ruido, con ruido y,
filtradas (sefiales con ruido mas una etapa de filtrado),
donde la idea es observar que el desempefio de los
métodos de optimizacion sea adecuado con todos los
tipos de sefiales. Esto se realiza puesto que en [10] se
demuestra que algunos métodos de optimizacion tienen
un desempefo sobresaliente al utilizar sefiales sin ruido,
pero muy pobre con sefiales con ruido, que es como lo
son en la vida real.

Por otro lado, los indicadores precitados, salvo el
tiempo de ejecucidon, se recomienda que se evalien
clasificados por magnitud de variacion de tension (AV),
dado que es de importancia observar el desempefio con
datos tipo ambiente (mediciones con AV menores a 0.03
pu [10]) de PMU, que son los de mayor disponibilidad en
un sistema eléctrico real.

3.4  Determinacion del Algoritmo de Identificacion

Paramétrica del Modelo de Carga OCL

Tal como se observa en la Figura 2, y una vez definido
el mejor método de optimizacion para estimar los
parametros del modelo de carga OCL, la ultima etapa
consiste en determinar el algoritmo de identificacion
paramétrica para este modelo. Para esto es necesario:
definir los requisitos minimos en las mediciones
sincrofasoriales, en lo que respecta a la minima variacion
de tensidbn que es necesaria para asegurar con gran
probabilidad que los parametros estimados del modelo
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OCL son precisos y; los valores de RMSE,p que
indiquen con gran probabilidad que el modelo fue
estimado con suficiente precision.

4. ANALISIS DE RESULTADOS

4.1  Sistema de Prueba
El sistema IEEE de 39 barras que se encuentra
implementado en el software de simulacion

PowerFactory se ha utilizado como sistema de prueba,
pero con las siguientes consideraciones:

e Las 19 cargas que conforman el sistema IEEE 39
han sido modificadas para que se comporten bajo
el modelo de carga OCL. Dado que el modelo
OCL no se encuentra implementado en
PowerFactory, este ha sido programado en DSL
(DIgSILENT Simulation Language).

Con programacion DPL (DIgSILENT
Programming Language) se han generado once
mil diferentes escenarios de operacion, en donde
los parametros de los modelos OCL varian
aleatoriamente de acuerdo con los valores
recomendados en [9] y sintetizados en las
ecuaciones (8) a (11). En cuanto a la demanda de
las cargas, esta se genera aleatoriamente para cada
uno de los once mil escenarios con base en tres
curvas de demanda: residencial, comercial e
industrial. El proceso es: se selecciona
aleatoriamente una hora del dia, se obtiene el
valor de demanda a esa hora de una de las tres
curvas precitadas, se corre un flujo optimo de
potencia y, se obtiene como resultado el despacho
de cada generador.

Posterior a lo anterior, se asigna de forma
aleatoria una de las siguientes contingencias a
cada escenario de operacion: cambio repentino de
la carga con valor aleatorio; salida aleatoria de un
generador; o, cortocircuito en una linea de
transmision con ubicacion aleatoria.

Se realizan simulaciones dinamicas del tipo
fasorial (RMS), con una duracion de 10 segundos,
para cada uno de los once mil escenarios
precitados.

Se almacenan en archivos planos a la tension,
potencia activa y potencia reactiva, de cada una de
las 19 cargas que conforman el sistema IEEE 39.
La tasa de muestreo es de 60 FPS, de manera que
sea idénticas a las obtenidas con una PMU.

Con base en lo anterior, se han simulado los
escenarios de operacion y se han almacenado las
mediciones sincrofasoriales sintéticas, con una cantidad
de escenarios clasificados por magnitud de variacion de
tension como se muestra en la Figura 3. La cantidad
minima de escenarios se da entre AV de 0.17 y 0.18, con
107 escenarios. Con el objeto de que posteriormente no
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se obtengan resultado sesgados por la diferencia
sustancial de cantidad de escenarios, se limita a 107
escenarios para cada AV mostrado en la Figura 3,
obteniendo un total de 6741 escenarios.

4
25<'\U

Cantidad de escenarios

g

102 107 10°
Magnitud de Variacion de Tension (pu)

102

Figura 3: Cantidad de Escenarios Clasificados por Magnitud de
Variacién de Tension

4.2  Evaluaciéon del Desempeiio de los Métodos de
Optimizacion

Con los cuatro indicadores precitados se evalta y

compara el desempefio de los métodos de optimizacion

de la Tabla 1 para estimar los parametros del modelo de

carga OCL.

4.2.1 Tiempo de ejecucion

En la Figura 4 se presenta el tiempo de ejecucion al
estimar el modelo OCL de potencia reactiva y al utilizar
las mediciones sincrofasoriales filtradas. Los tiempos
para potencia activa o al utilizar sefales sin ruido son
idénticos. Hay diez diagramas de cajas correspondientes
a los diez métodos de optimizacion, en el mismo orden
de los listados en la Tabla 1. La presentacion es en
diagramas de cajas puesto que se calcula el tiempo de
ejecucion para los 6741 escenarios precitados del
sistema de prueba.

Al observar la Figura 4 se concluye que los tiempos
de ejecucion son pequefios, salvo para el método 7.
Genetic algorithm, lo cual significa que son adecuados
para las metodologias de modelamiento de carga
automaticas y en linea actuales.

10"

Tiempo (s)

5 6

Métodos de Optimizacién

10

Figura 4: Tiempo de Ejecucion de los 10 Algoritmos de
Optimizacién de la Tabla 1
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Figura 5: Cantidad de Soluciones Viables del Modelo OCL de Potencia Activa. a) Sin Ruido. b) Con Ruido + Filtro
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4.2.2  Cantidad de soluciones viables (CSV)

La CSV que alcanza cada uno de los diez métodos de
optimizacion, clasificados por magnitud de variacion de
tension (AV), se presenta en la Figura 5. Este CSV
corresponde a la estimacion de los modelos OCL de
potencia activa, sin embargo, valores muy similares se
alcanzan para la potencia reactiva. En la Figura 5 a) se
utilizan mediciones sincrofasoriales sin ruido, mientras
en la Figura 5 b) sefiales con ruido mas una etapa de
filtrado.

Al analizar la Figura 5 a), con mediciones sin ruido,
se observa que los métodos de optimizacion tradicionales
Trust-region-reflective, Levenberg-marquardt e Interior-
point alcanzan un desempefio bastante alto, pues sus CSV
alcanzan porcentajes elevados. Por el contrario, al utilizar
sefiales filtradas, Figura 5 b), que es como son en la vida
real, estos métodos reducen considerablemente su
desempefio, con CSV bastante bajos, sobre todo para
pequeios AV,

Al considerar que es una tendencia actual estimar los
modelos de carga con datos tipo ambiente (mediciones
con AV menores a 0.03 pu [10]) de PMU, debido a que
son las de mayor disponibilidad, y que las mediciones
sincrofasoriales contienen ruido que se lo filtra, se
concluye a partir de la Figura 5 b) que el método Active-
set es el mejor, con un desempeilo muy superior a los
otros métodos. Es importante resaltar que este hallazgo
es un aporte al estado del arte, pues el tnico trabajo que
investiga la identificacion paramétrica del modelo OCL
[9] utiliza el método Levenberg-Marquardt, ademas de
que, en este trabajo se demuestra que no es necesario
utilizar métodos heuristicos, como se viene proponiendo
actualmente en la literatura para el modelamiento de
carga.

4.2.3  Error cuadrdtico medio estandarizado

(RMSE ,p)

En la Figura 6 se presentan los RMSE,p alcanzados,
clasificados por magnitud de variacién de tension (AV),
al estimar los modelos de carga OCL de potencia reactiva
y al utilizar sefales con ruido. Valores de RMSE,p
similares se obtienen para el modelo OCL de potencia
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Cantidad de escenarios {%)
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0%

10

1w 10"

Método de Optimizacion

activa, y valores iguales o inferiors al utilizar sefiales sin
ruido o filtradas.

Al analizar los valores de la Figura 6 se concluye que,
los diez métodos de optimizaciéon alcanzan valores
adecuados de RMSE,p, pues sus valores son inferiors a
0.05, de acuerdo con los limites razonables
recomendados en [10]. A pesar de lo anterior, los
métodos heuristicos Simulated annealing y Differential
evolution alcanzan valores de RMSE,p sustancialmente
mas altos que los otros métodos.

Finalmente, con base en la Figura 6, no se puede
seleccionar el método de optimizacion mas adecuado
para esta aplicacion.
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003
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0.015
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10

10"
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Figura 6: Media del RMSE,p con Mediciones con Ruido + Filtro

102

4.2.4  Error en la estimacion de parametros (EEP)

En la Figura 7 se presenta el EEP alcanzado al estimar
los modelos OCL de potencia activa, con sefiales sin
ruido y con sefales con ruido + filtro. Valores muy
similares de EEP se obtienen para el modelo OCL de
potencia reactiva.

En este indicador y en la Figura 7 es muy importante
diferenciar los EEP alcanzados cuando se utilizan sefiales
sin ruido o sefiales con ruido + filtro. Al analizar la Figura
7 se observa que los métodos Trust-region-reflective y
Levenberg-marquardt alcanzan EEP de précticamente
cero con sefiales sin ruido, lo que quiere decir que su
desempeio es ideal. Por el contrario, cuando se utilizan
sefiales con ruido + filtro, que es como sucede en la vida
real, el desempeflo de estos dos métodos cae
drasticamente y es inferior al de otros métodos. Este es
un aporte a la literatura, pues demuestra que el método
Levenberg-marquardt, que es el mas utilizado en el
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modelamiento de carga, no es recomendable. Ademas,

este particular concuerda con lo investigado en [10] para
otro modelo de carga.

Media de EEP

Desde una perspectiva teorica, el mejor desempeiio
del algoritmo Active-set frente al ruido puede atribuirse
a su capacidad para gestionar de manera explicita el
conjunto de restricciones activas durante el proceso
iterativo. A diferencia de los métodos basados en
gradientes de segundo orden, que dependen fuertemente

— Trust-egion-refiective
ardt

5 . = . o

A E : : . s
AV ASY
5 ¢ " ! _
?0'3 o 1072 15" - 10°

Magnitud de variacion de tension (pu)

de la curvatura local de la funcion objetivo y de la

0
10

Una vez definido el AV minimo, el siguiente aspecto
por determinar es el valor de RMSE,p que indique con
cierta probabilidad que el EEP alcanzado es bajo. Esto se

107! 10°

102
Magnitud de variacion de tension (pu)

Figura 7: EEP para el Modelo OCL de Potencia Reactiva. a) Sin Ruido. b) Con Ruido + Filtro

da porque en el mundo real no se puede calcular el EEP,
sino el RMSE,p. Para esto, en la Figura 8 se presenta la
relacion entre el RMSE,p y el EEP. Al analizar la Figura
8 se concluye que un valor de RMSE,p < 0.02 indica
con alrededor del 75% de probabilidad que el EEP es
menor a 15.

Con base en todo lo anterior, el algoritmo planteado

estabilidad del Hessiano —ambos susceptibles a  de identificacion paramétrica del modelo OCL es el
perturbaciones inducidas por ruido en los datos de  siguiente:

entrada—, el enfoque Active-set desacopla la . o
identificacion de las restricciones activas del calculo de * Se reciben 10 segundos de mediciones

la direccion de busqueda. Esta caracteristica le permite
mantener la factibilidad del problema incluso cuando las
derivadas de primer y segundo orden se ven afectadas,

reduciendo
soluciones

asi la probabilidad de converger hacia
inestables o inconsistentes. Adicionalmente,

al resolver subproblemas cuadraticos con restricciones en
cada iteracion, el algoritmo introduce una capa de control

estructural

que limita la propagacion del ruido hacia la

solucion final, lo que se traduce en una mayor robustez

cn

contextos

donde las mediciones presentan

fluctuaciones o imprecisiones inherentes, como lo es el

ruido.

4.3

Algoritmo de Identificacion Paramétrica del

Modelo de Carga OCL

De la seccion anterior se concluye que el método de
optimizacion mas adecuado para estimar los parametros
del modelo de carga OCL es Active-set.

Una vez determinado el mejor método, el siguiente y
ultimo paso es definir el algoritmo de identificacion
paramétrica del modelo OCL. Para esto es necesario

determinar

dos aspectos.

El primero es la magnitud de variacion de tension
(AV) minima requerida para estimar con suficiente
precision el modelo OCL. Esto se puede determinar al
observar la Figura 5 b) para el método de optimizacion

Active-set.
para AV >

Al analizar esta Figura 5 b) se observa que
0.005 pu el CSV es al menos de 50%, lo que

quiere decir que, con AV > 0.005pu se puede estimar los
modelos de carga al menos en el 50% de escenarios.
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sincrofasoriales de una barra de carga.

Se filtran las sefales con alguna técnica de filtrado
o suavizado de datos.

Se comprueba que la magnitud de variacion de
tension (AV) sea superior a 0.005 pu. De no ser
asi, se detiene el algoritmo y se regresa al primer
paso.

Se ejecuta el proceso de identificacion
paramétrica definido en la seccion 2.1.2 con el
método de optimizacion Active-set.

Se calcula el indicador RMSE,p y se comprueba
que sea menor o igual a 0.02. De serlo, se intuye
que el modelo de carga ha sido estimado de forma
correcta, caso contrario, se dice que el modelo de
carga estimado es impreciso.

Se inicia de nuevo este algoritmo, esperando una
nueva  serie temporal de  mediciones
sincrofasoriales.
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Figura 8: RMSE ,p vs EEP para el Método de Optimizacién

Active-set
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Finalmente, para utilizar el algoritmo planteado en
este trabajo se debe tener en cuenta las siguientes
consideraciones:

e Disponer de mediciones sincrofasoriales de una
barra de carga de un sistema eléctrico con una tasa
de reporte elevada que permita capturar la
dinamica de las cargas.

e Utilizar alguna metodologia que determine el tipo
de modelo de carga que representa el
comportamiento de dicha barra de carga. En el
caso de que corresponda al modelo de carga OCL,
se procede a utilizar el algoritmo planteado en este
trabajo.

5. CONCLUSIONES Y TRABAJOS FUTUROS

En este trabajo se realizd un analisis exhaustivo de
diez métodos de optimizacion para estimar los
parametros de los modelos de carga OCL. Este modelo
ha sido estudiado solamente en [9], por lo que se realizan
los siguientes aportes a la literatura:

e Cuando se analizan los métodos de optimizacion
con sefiales sin ruido los métodos Trust-region-
reflective y Levenberg-marquardt tienen un
desempefo ideal y muy superior a los otros
métodos, sin embargo, cuando las sefiales tienen
ruido, y su correspondiente técnica de filtrado, el
desempeino de estos métodos cae drasticamente.
Dado que en la practica las sefales de las PMU
tienen ruido, no se recomienda utilizar estos
métodos, como se lo utiliza en [9].

e Los métodos de optimizacion heuristicos, que son
una tendencia actual, presentan un desempefio
inferior a los métodos tradicionales, por lo tanto,
no hace falta utilizarlos en la estimacion de los
modelos de carga OCL.

e Los tiempos de ejecucion de los diez métodos de
optimizacion evaluados en este trabajo son
adecuados para metodologias de modelamiento de
carga en linea, salvo el método Genetic algorithm.

e Para estimar los parametros del modelo de carga
OCL se recomienda utilizar mediciones
sincrofasoriales que contengan una magnitud de
variacion de tension de al menos 0.005 pu. Este
valor es importante ya que cuantifica la variacion
minima necesaria en datos tipo ambiente de PMU
para estimar el modelo OCL.

e Por ultimo, otro aporte de este trabajo es la
determinacion del valor limite del indicador
RMSE,p. Un valor igual o inferior a 0.02 pu
indica con alrededor del 75% de probabilidad que
el modelo ha sido estimado con suficiente
precision.

Como trabajos futuros se plantea evaluar el algoritmo
planteado en este trabajo con mediciones sincrofasoriales
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obtenidas por PMU ubicadas en sistemas eléctricos
reales.
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