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Abstract 

 
Currently, accurately modeling loads, representing their 
dynamic behavior, and capturing variations in load 
model parameters over time is a fundamental issue. To 
this end, synchrophasor measurements, automatic and 
online load modeling methodologies, and new dynamic 
load models are used today. Recently, a research project 
has proposed the Oscillatory Component Load (OCL) 
model, which has the advantage of representing not only 
the static and exponential recovery behavior of loads, 
but also their oscillatory behavior. In this regard, the 
parametric identification process of this OCL model has 
not been investigated in depth, therefore this work does 
so, from determining the best optimization method for 
the parametric identification process to determining the 
characteristics that synchrophasor measurements must 
contain to obtain accurate OCL models. 

Resumen 

 
Actualmente modelar adecuadamente las cargas, 
representar su comportamiento dinámico y capturar las 
variaciones de los parámetros de los modelos de carga 
en el tiempo es un tema fundamental. Para esto hoy en 
día se utilizan mediciones sincrofasoriales, 
metodologías de modelamiento de carga automáticas y 
en línea y, nuevos modelos de carga dinámicos. En el 
último tiempo en un trabajo de investigación se ha 
planteado el Oscillatory Component Load Model 
(OCL), el cual tiene como aporte que permite 
representar no solamente el comportamiento estático y 
exponencial de recuperación de las cargas, sino también 
el comportamiento oscilatorio. En este sentido, el 
proceso de identificación paramétrica de este modelo 
OCL no ha sido investigado a profundidad, por lo que 
se lo realiza en este trabajo, desde determinar el mejor 
método de optimización para el proceso de 
identificación paramétrica, hasta las características que 
deben contener las mediciones sincrofasoriales para 
obtener modelos de carga OCL precisos. 

Index terms Load Modeling, OCL, Oscillatory 
Component Load Model, Parametric Identification, 
PMU, Synchrophasor. 

Palabras clave  Modelamiento de carga, OCL, 
Oscillatory Component Load Model, Identificación 
Paramétrica, PMU, sincrofasor. 
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1. INTRODUCCIÓN 

Los sistemas eléctricos de potencia operan cada vez 
más cerca de sus límites de estabilidad debido, 
principalmente, al crecimiento de la demanda y a la 
inclusión de centrales de generación con energías 
renovables. Esta situación conlleva a que 
progresivamente se deban realizar simulaciones más 
precisas, sobre todo en estado dinámico, para lo cual es 
necesario tener modelos validados de los componentes 
que conforman un sistema eléctrico [1]. Dentro de estos 
componentes, la carga es uno de los elementos más 
desafiantes de estimar, pues sus modelos varían 
continuamente con el tiempo [2], [3], a diferencia de, por 
ejemplo, las líneas de transmisión, cuyo modelo no 
cambia con el tiempo. 

Además de lo anterior, representar adecuadamente la 
dinámica de las cargas es fundamental. Un claro ejemplo 
se muestra en la Figura 1 (tomada de [4]), la cual 
representa un apagón (black-out) ocurrido el 10 de agosto 

interconexión California-Oregon (COI) [4]. En la Figura 
1 a) se muestra las mediciones reales de las oscilaciones 
de potencia. En la Figura 1 b) la respuesta simulada con 
un caso de estudio base. En la Figura 1 c) se observa la 
respuesta del sistema una vez realizado un proceso de 
validación a los modelos eléctricos de varios elementos 
de la red, entre ellos al modelo de la carga al cual se le 
añadió varias cargas estáticas y, la dinámica de los 
motores de inducción de los aires acondicionados. Este 
ejemplo permite resaltar la importancia de modelar 
adecuadamente el comportamiento estático y dinámico 
de las cargas. 

Con base en lo anterior, para lograr capturar la 
dinámica de las cargas es necesario contar con sistemas 
de medición que lo permitan [5]. Las mediciones 
sincrofasoriales provenientes de Unidades de Medición  

Fasorial (PMU) son idóneas [2], [3], pues una de sus 
principales ventajas es que reportan hasta 50 o 60 fasores 
por segundo (FPS, frames per second) [6], lo cual 
permite capturar la dinámica de los sistemas y, por ende, 
estimar los parámetros de los modelos de carga 
dinámicos. 

Por otro lado, para representar el comportamiento 
dinámico de las cargas existen varios modelos. El 
primero y más conocido es el modelo dinámico de un 
motor de inducción, sin embargo, este tiene varios 
parámetros por determinar, además de ser complejo [2], 
[3]. Como solución, en la literatura se ha planteado el 
modelo Exponential Recovery load (ERL), el cual es 
aplicado en escenarios donde la carga se recupera de 
forma exponencial luego de un cambio repentino en la 
tensión. Varios estudios como [3], [7], [8] abordan este 
modelo, sin embargo, tiene como inconveniente que no 
puede representar el componente oscilatorio de las 
cargas. Ante esto, en [9] se plantea un nuevo modelo 
llamado Oscillatory Component Load Model (OCL), el 
cual es deducido de una ecuación diferencial de segundo 
orden que contempla tres componentes: uno estático, uno 
de recuperación exponencial y, uno de oscilaciones 
amortiguadas, siendo este último el aporte y ventaja de 
este modelo. Por otro lado, el proceso de identificación 
paramétrica planteado en [9] se basa en minimizar una 
función objetivo en base a mínimos cuadrados, que 
compara las mediciones de potencia reales frente a las 
mediciones estimadas por el modelo OCL, y se lo 
resuelve con la técnica de optimización Levenberg-
Marquardt.  

Con base en lo anterior, y dado que el modelo OCL 
ha sido estudiando únicamente en [9], se encuentran las 
siguientes áreas por investigar:  

 Determinar el mejor algoritmo de optimización 
para minimizar la función objetivo del proceso de 

 

Figura 1: Ejemplo de un Apagón en el Sistema WSCC. a) Mediciones Reales. b) Simulación con el Caso Base. Fuente [4]. 
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identificación paramétrica del modelo OCL con 
mediciones sincrofasoriales, pues en la literatura 
se utilizan varios, como los mostrados en la Tabla 
1 [10]. 

 Establecer las características mínimas 
recomendables en las mediciones sincrofasoriales 
para lograr estimar con precisión los parámetros 
del modelo de carga OCL [10]. 

 Evaluar el impacto que tiene el ruido de las 
mediciones sincrofasoriales en la estimación del 
modelo de carga OCL, pues en [11], [12] se 
demuestra que el ruido tiene un impacto 
significativo y negativo en la estimación 
paramétrica de otros modelos de carga. 

Justamente las áreas por investigar mencionadas 
anteriormente son las que se abordan en este trabajo. En 
este sentido, para cumplir con estos objetivos, este 
documento se organiza de la siguiente manera: en la 
segunda sección se describe el marco teórico; en la 
tercera sección se presenta la metodología utilizada para 
evaluar diferentes técnicas de optimización; en la cuarta 
sección se obtienen los resultados y; en la quinta sección 
se presentan las conclusiones. 

2. MARCO TEÓRICO 

 

El modelamiento de carga es una tarea que permite 
determinar un modelo matemático que represente 
adecuadamente el funcionamiento de las cargas de un 
sistema eléctrico en diferentes estudios o aplicaciones. El 
modelamiento de carga abarca dos etapas: la elección de 
un modelo de carga y, la estimación de los valores de los 
parámetros del modelo elegido [13]. En este trabajo se 
aborda al modelo de carga OCL, por lo que se lo define a 
continuación: 

2.1.1 Modelo de carga oscillatory component load 
(OCL) 

El modelo Oscillatory Component Load Model 
(OCL) se deriva de una ecuación diferencial de segundo 
orden que considera tres tipos de componentes llamados: 
estático, recuperación exponencial y oscilaciones 
amortiguadas. Este modelo ha sido planteado en la 
literatura en [9], donde las ecuaciones (1) a (3) son para 
potencia activa, y (4) a (6) para potencia reactiva [9]. 

 (1) 

 (2) 

 (3) 

 (4) 

 (5) 

 (6) 

Donde: 

 y  son constantes que cuantifican la 
componente estática exponencial. 

  y  son variables de estado 
correspondiente a la recuperación exponencial. 

  y  son variables de estado 
correspondiente a la componente oscilatoria.  

  y  representan las proporciones o 
pesos de la componente de recuperación 
exponencial y oscilatoria, respectivamente, para 
el modelo de potencia activa. 

  y  representan las proporciones o 
pesos de la componente de recuperación 
exponencial y oscilatoria, respectivamente, para 
el modelo de potencia reactiva. 

  y  son constantes de tiempo exponenciales. 

  y  son factores de amortiguamiento. 

  y  es la frecuencia natural. 

2.1.2 Identificación paramétrica del modelo OCL 

La identificación paramétrica es un proceso que 
determina el valor de los parámetros de un modelo de 
carga de modo que, cuando se ajustan estos parámetros, 
los modelos de carga reproducen fielmente el 
comportamiento real de las cargas. 

Para el caso del modelo OCL, la idea es determinar 
los 6 parámetros que definen el modelo OCL de potencia 
activa ( , , , , , ), mediante la 
minimización de la función objetivo (7), sujeto a 
restricciones de límites superior e inferior para estos 6 
parámetros. Un proceso análogo se repite para los 6 
parámetros que definen el modelo OCL de potencia 
reactiva. 

 (7) 

Donde:  es la potencia estimada con el modelo de 
carga OCL,  es la potencia medida por una PMU, y 

 es la cantidad de muestras de la serie temporal. Por 
ejemplo, para 10 segundos de mediciones de una PMU 
con 60 FPS, . 

Los límites superiores ( ) e inferiores ( ) para los 
seis parámetros del modelo OCL de potencia activa se 
presentan en (8) y (9), y para el modelo de potencia 
reactiva en (10) y (11). Estos límites han sido obtenidos 
de los valores recomendados en [9]. 

 (8) 

 (9) 

 (10) 
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 (11) 

Donde el orden de los parámetros es: , , 
, ,  y . 

 

Para minimizar una función objetivo, en este caso la 
mostrada en (7), es necesario aplicar un método de 
optimización. En este trabajo se compara el desempeño 
de diez métodos de optimización, los cuales se enlistan 
en la Tabla 1. 

Dado que los métodos de optimización se encuentran 
ampliamente documentados en la literatura [14] e 
implementados en programas comerciales o de código 
abierto como MATLAB y Python, no se los desarrolla en 
este trabajo. No obstante, es importante mencionar que, 
de manera general, estos métodos pueden clasificarse en 
deterministas (tradicionales) y heurísticos o 
metaheurísticos. Los métodos deterministas pueden 
garantizar la convergencia al óptimo global únicamente 
cuando la función objetivo es convexa; en problemas no 
convexos, su desempeño depende de las condiciones 
iniciales y pueden converger a óptimos locales. Por su 
parte, los métodos heurísticos y metaheurísticos no 
ofrecen garantías formales de optimalidad global, pero 
emplean estrategias de exploración más amplias que les 
permiten aproximarse a soluciones cercanas al óptimo 
global, usualmente con un mayor costo computacional 
[14]. Los primeros cinco métodos de la Tabla 1 son 
tradicionales, mientras los restantes son heurísticos. 

Tabla 1: Métodos de Optimización.  

N.º Método de Optimización 

M1 Trust-region-reflective 

M2 Levenberg-marquardt 

M3 Interior-point 

M4 SQP 

M5 Active-set 

M6 Pattern search 
 

M7 Genetic algorithm 

M8 Particle swarm optimization 

M9 Simulated annealing algorithm 

M10 Differential evolution 

3. METODOLOGÍA 

La metodología para evaluar diferentes métodos de 
optimización en la estimación paramétrica del modelo de 
carga OCL se sintetiza en el diagrama de flujo de la 
Figura 2. Cada una de las etapas mostradas en esta figura 
se detallan a continuación: 

 

 
Figura 2: Diagrama de Flujo de la Metodología para Evaluar 

Diferentes Métodos de Optimización en la Estimación 
Paramétrica del Modelo de Carga OCL. 

 

Con el objeto de evaluar las diferentes técnicas de 
optimización en el proceso de identificación paramétrica 
del modelo de carga OCL es necesario utilizar un sistema 
de prueba, de manera que se generen mediciones 
sincrofasoriales sintéticas de las barras de carga de dicho 
sistema. Para esto se plantea seguir el siguiente proceso: 

 Seleccionar un sistema de prueba. 

 Configurar las cargas para que su comportamiento 
sea en base al modelo de carga OCL.  

 Mediante Monte Carlo generar una gran cantidad 
de escenarios de operación donde varie la 
demanda del sistema y los parámetros del modelo 
OCL de carga. 

 Ejecutar flujos óptimos de potencia. 

 Mediante Monte Carlo generar eventos para cada 
escenario de operación, como variaciones en la 
carga, cortocircuitos, fallas, cambio en los TAP de 
los transformadores, entre otros. 

 Realizar simulaciones en el dominio fasorial 
(RMS) para cada uno de estos escenarios. 

 Almacenar las simulaciones temporales de 
tensión, potencia activa y potencia reactiva, de 
cada una de las barras de carga de dicho sistema, 
y de manera idéntica a una PMU real, es decir, con 
una tasa de reporte de 50 o 60 fasores por segundo 
(FPS, frames per second). 

 Con el objeto de que las mediciones sintéticas 
sean idénticas a las reales, se les añade ruido 
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blanco con los valores de SNR (dB) que se 
detallan en (12), donde V, P y Q representan la 
tensión, potencia activa y potencia reactiva, 
respectivamente [12]. 

 (12) 

 

Con las mediciones sincrofasoriales sintéticas 
obtenidas del sistema de prueba se realiza el proceso de 
identificación paramétrica detallado en la sección 2.1.2, 
pero se repite con cada uno de los diez métodos de 
optimización de la Tabla1. Para comparar el desempeño 
de cada uno de estos algoritmos se utilizan los siguientes 
indicadores planteados en [10] que se reproducen a 
continuación. 

3.2.1 Tiempo de ejecución 

El tiempo de ejecución es el tiempo que tarda un 
método en encontrar una solución óptima. No incluye 
tiempos de carga de datos, preprocesamiento, 
almacenamiento de resultados, ni ningún tiempo que no 
sea exclusivamente el de minimizar la función objetivo. 
Los tiempos de ejecución deberían ser inferiores a unas 
cuantas decenas de segundos, pues hoy en día es una 
tendencia estimar los parámetros de los modelos de carga 
continuamente en línea y de forma automática [13]. 

3.2.2 Cantidad de soluciones viables (CSV) 

La CSV es un indicador que calcula, en porcentaje, la 
cantidad de escenarios en los que cada método de 
optimización encuentra una solución viable, es decir, que 
minimice la función objetivo (7) y que cumpla las 
restricciones presentadas en las ecuaciones (8) a (11). 

3.2.3 Error en la estimación de parámetros (EEP) 

El EEP es un indicador que cuantifica el error 
alcanzado al estimar los 6 parámetros del modelo OCL. 
Para esto se calcula la media del error normalizado de los 
6 parámetros, tal como se observa a continuación:  

 (13) 

Donde y  son vectores que 
contienen los parámetros reales y estimados del modelo 
de carga. En este caso, para el modelo OCL, y 

 son vectores de longitud seis, puesto que el 
modelo OCL se define mediante seis parámetros para el 
modelo de potencia activa y otros seis parámetros para el 
de potencia reactiva. 

Es importante notar que este indicador EEP no se 
puede calcular en la práctica ya que no se conocen los 
parámetros reales, no obstante, el objetivo de este 
indicador es comparar diferentes métodos de 
optimización en ambiente de simulación. 

 

 

3.2.4 Error Cuadrático medio estandarizado 
( ) 

La Raíz del Error Cuadrático Medio Normalizado es 
un indicador planteado en [10] y está enfocado 
específicamente para comparar el desempeño de 
diferentes métodos de optimización en el modelamiento 
de carga. Su formulación se presenta en (14). 

 
(14) 

Donde:  es la potencia estimada con el modelo de 
carga OCL,  es la potencia medida por una PMU,  
es la cantidad de muestras de la serie temporal y,  es 
la magnitud de variación de potencia (activa o reactiva) 
en la serie temporal. La magnitud de variación de 
potencia ( ) se calcula en pu como la diferencia entre 
el valor máximo y mínimo que alcanza la potencia en la 
ventana de tiempo a utilizar. Valga la aclaración, este 
indicador se calcula para el modelo OCL de potencia 
activa y para el modelo de potencia reactiva. 

 

En base a los cuatro indicadores precitados se evalúa 
y compara el desempeño de los métodos de optimización 
para estimar los parámetros del modelo de carga OCL. Es 
importante señalar que esta evaluación se realiza al 
utilizar tres tipos de mediciones: sin ruido, con ruido y, 
filtradas (señales con ruido más una etapa de filtrado), 
donde la idea es observar que el desempeño de los 
métodos de optimización sea adecuado con todos los 
tipos de señales. Esto se realiza puesto que en [10] se 
demuestra que algunos métodos de optimización tienen 
un desempeño sobresaliente al utilizar señales sin ruido, 
pero muy pobre con señales con ruido, que es como lo 
son en la vida real. 

Por otro lado, los indicadores precitados, salvo el 
tiempo de ejecución, se recomienda que se evalúen 
clasificados por magnitud de variación de tensión ( ), 
dado que es de importancia observar el desempeño con 
datos tipo ambiente (mediciones con  menores a 0.03 
pu [10]) de PMU, que son los de mayor disponibilidad en 
un sistema eléctrico real. 

 

Tal como se observa en la Figura 2, y una vez definido 
el mejor método de optimización para estimar los 
parámetros del modelo de carga OCL, la última etapa 
consiste en determinar el algoritmo de identificación 
paramétrica para este modelo. Para esto es necesario: 
definir los requisitos mínimos en las mediciones 
sincrofasoriales, en lo que respecta a la mínima variación 
de tensión que es necesaria para asegurar con gran 
probabilidad que los parámetros estimados del modelo 
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OCL son precisos y; los valores de   que 
indiquen con gran probabilidad que el modelo fue 
estimado con suficiente precisión. 

4. ANÁLISIS DE RESULTADOS 

 

sistema IEEE de 39 barras que se encuentra 

implementado en el software de simulación 
PowerFactory se ha utilizado como sistema de prueba, 
pero con las siguientes consideraciones:

 Las 19 cargas que conforman el sistema IEEE 39 
han sido modificadas para que se comporten bajo 
el modelo de carga OCL. Dado que el modelo 
OCL no se encuentra implementado en 
PowerFactory, este ha sido programado en DSL 
(DIgSILENT Simulation Language). 

 Con programación DPL (DIgSILENT 
Programming Language) se han generado once 
mil diferentes escenarios de operación, en donde 
los parámetros de los modelos OCL varían 
aleatoriamente de acuerdo con los valores 
recomendados en [9] y sintetizados en las 
ecuaciones (8) a (11). En cuanto a la demanda de 
las cargas, esta se genera aleatoriamente para cada 
uno de los once mil escenarios con base en tres 
curvas de demanda: residencial, comercial e 
industrial. El proceso es: se selecciona 
aleatoriamente una hora del día, se obtiene el 
valor de demanda a esa hora de una de las tres 
curvas precitadas, se corre un flujo óptimo de 
potencia y, se obtiene como resultado el despacho 
de cada generador. 

 Posterior a lo anterior, se asigna de forma 
aleatoria una de las siguientes contingencias a 
cada escenario de operación: cambio repentino de 
la carga con valor aleatorio; salida aleatoria de un 
generador; o, cortocircuito en una línea de 
transmisión con ubicación aleatoria. 

 Se realizan simulaciones dinámicas del tipo 
fasorial (RMS), con una duración de 10 segundos, 
para cada uno de los once mil escenarios 
precitados.  

 Se almacenan en archivos planos a la tensión, 
potencia activa y potencia reactiva, de cada una de 
las 19 cargas que conforman el sistema IEEE 39. 
La tasa de muestreo es de 60 FPS, de manera que 
sea idénticas a las obtenidas con una PMU. 

Con base en lo anterior, se han simulado los 
escenarios de operación y se han almacenado las 
mediciones sincrofasoriales sintéticas, con una cantidad 
de escenarios clasificados por magnitud de variación de 
tensión como se muestra en la Figura 3. La cantidad 

107 escenarios. Con el objeto de que posteriormente no 

se obtengan resultado sesgados por la diferencia 
sustancial de cantidad de escenarios, se limita a 107 

 Figura 3, 
obteniendo un total de  escenarios. 

 
Figura 3: Cantidad de Escenarios Clasificados por Magnitud de 

Variación de Tensión 

 

Con los cuatro indicadores precitados se evalúa y 
compara el desempeño de los métodos de optimización 
de la Tabla 1 para estimar los parámetros del modelo de 
carga OCL. 

4.2.1 Tiempo de ejecución 

En la Figura 4 se presenta el tiempo de ejecución al 
estimar el modelo OCL de potencia reactiva y al utilizar 
las mediciones sincrofasoriales filtradas. Los tiempos 
para potencia activa o al utilizar señales sin ruido son 
idénticos. Hay diez diagramas de cajas correspondientes 
a los diez métodos de optimización, en el mismo orden 
de los listados en la Tabla 1. La presentación es en 
diagramas de cajas puesto que se calcula el tiempo de 
ejecución para los  escenarios precitados del 
sistema de prueba.  

Al observar la Figura 4 se concluye que los tiempos 
de ejecución son pequeños, salvo para el método 7. 
Genetic algorithm, lo cual significa que son adecuados 
para las metodologías de modelamiento de carga 
automáticas y en línea actuales. 

 
Figura 4: Tiempo de Ejecución de los 10 Algoritmos de 

Optimización de la Tabla 1 
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4.2.2 Cantidad de soluciones viables (CSV) 

La CSV que alcanza cada uno de los diez métodos de 
optimización, clasificados por magnitud de variación de 
tensión ( ), se presenta en la Figura 5. Este CSV 
corresponde a la estimación de los modelos OCL de 
potencia activa, sin embargo, valores muy similares se 
alcanzan para la potencia reactiva. En la Figura 5 a) se 
utilizan mediciones sincrofasoriales sin ruido, mientras 
en la Figura 5 b) señales con ruido más una etapa de 
filtrado. 

Al analizar la Figura 5 a), con mediciones sin ruido, 
se observa que los métodos de optimización tradicionales 
Trust-region-reflective, Levenberg-marquardt e Interior-
point alcanzan un desempeño bastante alto, pues sus CSV 
alcanzan porcentajes elevados. Por el contrario, al utilizar 
señales filtradas, Figura 5 b), que es como son en la vida 
real, estos métodos reducen considerablemente su 
desempeño, con CSV bastante bajos, sobre todo para 
pequeños . 

Al considerar que es una tendencia actual estimar los 
modelos de carga con datos tipo ambiente (mediciones 
con  menores a 0.03 pu [10]) de PMU, debido a que 
son las de mayor disponibilidad, y que las mediciones 
sincrofasoriales contienen ruido que se lo filtra, se 
concluye a partir de la Figura 5 b) que el método Active-
set es el mejor, con un desempeño muy superior a los 
otros métodos. Es importante resaltar que este hallazgo 
es un aporte al estado del arte, pues el único trabajo que 
investiga la identificación paramétrica del modelo OCL 
[9] utiliza el método Levenberg-Marquardt, además de 
que, en este trabajo se demuestra que no es necesario 
utilizar métodos heurísticos, como se viene proponiendo 
actualmente en la literatura para el modelamiento de 
carga. 

4.2.3 Error cuadrático medio estandarizado 
( ) 

En la Figura 6 se presentan los  alcanzados, 
clasificados por magnitud de variación de tensión ( ), 
al estimar los modelos de carga OCL de potencia reactiva 
y al utilizar señales con ruido. Valores de  
similares se obtienen para el modelo OCL de potencia 

activa, y valores iguales o inferiors al utilizar señales sin 
ruido o filtradas.  

Al analizar los valores de la Figura 6 se concluye que, 
los diez métodos de optimización alcanzan valores 
adecuados de , pues sus valores son inferiors a 
0.05, de acuerdo con los límites razonables 
recomendados en [10]. A pesar de lo anterior, los 
métodos heurísticos Simulated annealing y Differential 
evolution alcanzan valores de sustancialmente 
más altos que los otros métodos.  

Finalmente, con base en la Figura 6, no se puede 
seleccionar el método de optimización más adecuado 
para esta aplicación. 

 
Figura 6: Media del  con Mediciones con Ruido + Filtro 

4.2.4 Error en la estimación de parámetros (EEP) 

En la Figura 7 se presenta el EEP alcanzado al estimar 
los modelos OCL de potencia activa, con señales sin 
ruido y con señales con ruido + filtro. Valores muy 
similares de EEP se obtienen para el modelo OCL de 
potencia reactiva.  

En este indicador y en la Figura 7 es muy importante 
diferenciar los EEP alcanzados cuando se utilizan señales 
sin ruido o señales con ruido + filtro. Al analizar la Figura 
7 se observa que los métodos Trust-region-reflective y 
Levenberg-marquardt alcanzan EEP de prácticamente 
cero con señales sin ruido, lo que quiere decir que su 
desempeño es ideal. Por el contrario, cuando se utilizan 
señales con ruido + filtro, que es como sucede en la vida 
real, el desempeño de estos dos métodos cae 
drásticamente y es inferior al de otros métodos. Este es 
un aporte a la literatura, pues demuestra que el método 
Levenberg-marquardt, que es el más utilizado en el 

       a)                                                                                    b) 

Figura 5: Cantidad de Soluciones Viables del Modelo OCL de Potencia Activa. a) Sin Ruido. b) Con Ruido + Filtro 
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modelamiento de carga, no es recomendable. Además, 
este particular concuerda con lo investigado en [10] para 
otro modelo de carga. 

Desde una perspectiva teórica, el mejor desempeño 
del algoritmo Active-set frente al ruido puede atribuirse 
a su capacidad para gestionar de manera explícita el 
conjunto de restricciones activas durante el proceso 
iterativo. A diferencia de los métodos basados en 
gradientes de segundo orden, que dependen fuertemente 
de la curvatura local de la función objetivo y de la 
estabilidad del Hessiano ambos susceptibles a 
perturbaciones inducidas por ruido en los datos de 
entrada , el enfoque Active-set desacopla la 
identificación de las restricciones activas del cálculo de 
la dirección de búsqueda. Esta característica le permite 
mantener la factibilidad del problema incluso cuando las 
derivadas de primer y segundo orden se ven afectadas, 
reduciendo así la probabilidad de converger hacia 
soluciones inestables o inconsistentes. Adicionalmente, 
al resolver subproblemas cuadráticos con restricciones en 
cada iteración, el algoritmo introduce una capa de control 
estructural que limita la propagación del ruido hacia la 
solución final, lo que se traduce en una mayor robustez 
en contextos donde las mediciones presentan 
fluctuaciones o imprecisiones inherentes, como lo es el 
ruido. 

 

De la sección anterior se concluye que el método de 
optimización más adecuado para estimar los parámetros 
del modelo de carga OCL es Active-set. 

Una vez determinado el mejor método, el siguiente y 
último paso es definir el algoritmo de identificación 
paramétrica del modelo OCL. Para esto es necesario 
determinar dos aspectos.  

El primero es la magnitud de variación de tensión 
( ) mínima requerida para estimar con suficiente 
precisión el modelo OCL. Esto se puede determinar al 
observar la Figura 5 b) para el método de optimización 
Active-set. Al analizar esta Figura 5 b) se observa que 
para  el CSV es al menos de 50%, lo que 
quiere decir que, con  se puede estimar los 
modelos de carga al menos en el 50% de escenarios.  

Una vez definido el  mínimo, el siguiente aspecto 
por determinar es el valor de  que indique con 
cierta probabilidad que el EEP alcanzado es bajo. Esto se 

da porque en el mundo real no se puede calcular el EEP, 
sino el . Para esto, en la Figura 8 se presenta la 
relación entre el  y el EEP. Al analizar la Figura 
8 se concluye que un valor de indica 
con alrededor del 75% de probabilidad que el EEP es 
menor a 15.  

Con base en todo lo anterior, el algoritmo planteado 
de identificación paramétrica del modelo OCL es el 
siguiente: 

 Se reciben 10 segundos de mediciones 
sincrofasoriales de una barra de carga. 

 Se filtran las señales con alguna técnica de filtrado 
o suavizado de datos. 

 Se comprueba que la magnitud de variación de 
tensión ( ) sea superior a 0.005 pu. De no ser 
así, se detiene el algoritmo y se regresa al primer 
paso. 

 Se ejecuta el proceso de identificación 
paramétrica definido en la sección 2.1.2 con el 
método de optimización Active-set. 

 Se calcula el indicador  y se comprueba 
que sea menor o igual a 0.02. De serlo, se intuye 
que el modelo de carga ha sido estimado de forma 
correcta, caso contrario, se dice que el modelo de 
carga estimado es impreciso. 

 Se inicia de nuevo este algoritmo, esperando una 
nueva serie temporal de mediciones 
sincrofasoriales. 

 

Figura 8:  vs EEP para el Método de Optimización 
Active-set 

Figura 7: EEP para el Modelo OCL de Potencia Reactiva. a) Sin Ruido. b) Con Ruido + Filtro 
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Finalmente, para utilizar el algoritmo planteado en 
este trabajo se debe tener en cuenta las siguientes 
consideraciones: 

 Disponer de mediciones sincrofasoriales de una 
barra de carga de un sistema eléctrico con una tasa 
de reporte elevada que permita capturar la 
dinámica de las cargas. 

 Utilizar alguna metodología que determine el tipo 
de modelo de carga que representa el 
comportamiento de dicha barra de carga. En el 
caso de que corresponda al modelo de carga OCL, 
se procede a utilizar el algoritmo planteado en este 
trabajo.  

5. CONCLUSIONES Y TRABAJOS FUTUROS 

En este trabajo se realizó un análisis exhaustivo de 
diez métodos de optimización para estimar los 
parámetros de los modelos de carga OCL. Este modelo 
ha sido estudiado solamente en [9], por lo que se realizan 
los siguientes aportes a la literatura: 

 Cuando se analizan los métodos de optimización 
con señales sin ruido los métodos Trust-region-
reflective y Levenberg-marquardt tienen un 
desempeño ideal y muy superior a los otros 
métodos, sin embargo, cuando las señales tienen 
ruido, y su correspondiente técnica de filtrado, el 
desempeño de estos métodos cae drásticamente. 
Dado que en la práctica las señales de las PMU 
tienen ruido, no se recomienda utilizar estos 
métodos, como se lo utiliza en [9].  

 Los métodos de optimización heurísticos, que son 
una tendencia actual, presentan un desempeño 
inferior a los métodos tradicionales, por lo tanto, 
no hace falta utilizarlos en la estimación de los 
modelos de carga OCL.  

 Los tiempos de ejecución de los diez métodos de 
optimización evaluados en este trabajo son 
adecuados para metodologías de modelamiento de 
carga en línea, salvo el método Genetic algorithm. 

 Para estimar los parámetros del modelo de carga 
OCL se recomienda utilizar mediciones 
sincrofasoriales que contengan una magnitud de 
variación de tensión de al menos 0.005 pu. Este 
valor es importante ya que cuantifica la variación 
mínima necesaria en datos tipo ambiente de PMU 
para estimar el modelo OCL. 

 Por último, otro aporte de este trabajo es la 
determinación del valor límite del indicador 

. Un valor igual o inferior a 0.02 pu 
indica con alrededor del 75% de probabilidad que 
el modelo ha sido estimado con suficiente 
precisión. 

Como trabajos futuros se plantea evaluar el algoritmo 
planteado en este trabajo con mediciones sincrofasoriales 

obtenidas por PMU ubicadas en sistemas eléctricos 
reales. 
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