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Resumen:

Este artículo presenta una metodología técnica para la evaluación y priorización de proyectos de generación distribuida fotovoltaica (GD-FV) conectados a redes de distribución desbalanceadas de baja y media tensión. A partir de simulaciones detalladas en alimentadores reales, se analizan variaciones en la capacidad instalada, el tipo de conexión (monofásica y trifásica) y la localización de la GD-FV (concentrada y dispersa). Se evalúan 24 escenarios de integración, considerando su impacto sobre el perfil de tensión, pérdidas de potencia, desbalance de tensión, distorsión armónica, cargabilidad de líneas y distancia máxima de conexión. Como principal aporte, el estudio establece umbrales técnicos cuantificables que permiten priorizar proyectos de GD-FV bajo criterios operativos y de calidad del producto. La metodología propuesta constituye una herramienta aplicable a procesos de planificación, regulación y toma de decisiones en relación a la integración de GD-FV en redes de distribución.
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Abstract:

This paper presents a technical methodology for the evaluation and prioritization of photovoltaic distributed generation (PV-DG) projects connected to unbalanced low-and medium-voltage distribution networks. Detailed simulations are performed on real distribution feeders considering variations in installed capacity, connection type (single-phase and three-phase), and spatial allocation (concentrated and dispersed). Twenty-four integration scenarios are analyzed to assess their impact on voltage profile, power losses, voltage unbalance, harmonic distortion, feeder loading, and maximum admissible connection distance. As a main contribution, the study derives quantifiable technical thresholds that support decision-making processes for the planning and regulatory approval of PV-DG projects. The proposed methodology provides a structured, multivariable framework that enhances conventional impact assessments and can be directly applied by distribution utilities and regulatory agencies in relation to the integration of PV_DG into distribution networks.
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INTRODUCCIÓN

El crecimiento sostenido de la demanda eléctrica y la necesidad de diversificar las fuentes de suministro han impulsado la integración de generación distribuida (GD) en los sistemas eléctricos de distribución. En particular, la generación fotovoltaica distribuida se ha consolidado como una alternativa relevante debido a su modularidad, reducción de tiempos de implementación y contribución a la descarbonización del sector energético. En países con alta dependencia de generación hidroeléctrica, como Ecuador, la GD-FV adquiere especial importancia al mitigar los riesgos asociados a la variabilidad hidrológica y a los períodos de estiaje.

No obstante, la inserción de GD en redes de distribución, especialmente en redes radiales desbalanceadas de baja y media tensión, puede generar efectos adversos sobre el desempeño del sistema. Entre los principales impactos se encuentran las sobretensiones, el incremento de pérdidas técnicas, el flujo de potencia inverso, el aumento del desbalance de tensión y la degradación de la calidad del producto eléctrico debido a la distorsión armónica. Estos efectos dependen de múltiples factores, tales como la capacidad instalada, el tipo de conexión, la ubicación del generador y la distancia desde la fuente principal.

Aunque la literatura técnica aborda el análisis del impacto de la GD desde distintas perspectivas, la mayoría de los estudios evalúa escenarios aislados o se centra en un número limitado de indicadores eléctricos. Adicionalmente, los marcos regulatorios suelen basar la factibilidad de conexión en criterios parciales, como la cargabilidad del transformador, sin integrar de manera simultánea variables críticas de calidad del producto, balance de fases y distancia de conexión.

En este contexto, el presente trabajo propone una metodología de evaluación técnica multivariable que permite priorizar proyectos de generación distribuida fotovoltaica cuando existen múltiples solicitudes de conexión sobre una misma infraestructura. La metodología se fundamenta en simulaciones detalladas realizadas sobre redes reales de baja y media tensión y en un análisis comparativo de normativas internacionales. De esta forma, se establecen criterios técnicos cuantificables que contribuyen a una integración segura, eficiente y regulatoriamente consistente de la GD-FV en redes de distribución.


	METODOLOGÍA

Para el estudio del impacto técnico de la GD sobre redes de distribución, se ha considerado la evaluación de GD de tipo fotovoltaica, incorporada en redes desbalanceadas, con topología radial bajo los escenarios que se describen a continuación:

Caso 1: Red de baja tensión, evaluada en doce escenarios

Para las simulaciones se consideró la red baja tensión de fig.2 evaluada en 12 escenarios. El modelo de red (referencia de la EEQ) se caracteriza por su configuración radial, número significativo de cargas, distancia considerable entre el transformador y el suministro más lejano y un transformador con capacidad nominal de 100 kVA, 13,8 kV/220 V. De los 12 escenarios, 9 corresponden a la conexión trifásica de GD con capacidades de 30 kW, 60 kW y 90 kW concentradas al final del alimentador, a la mitad del alimentador y distribuidas de forma dispersa a lo largo del mismo. Los últimos 3 escenarios corresponden a la conexión monofásica de GD con capacidad de 30 kW, en las mismas ubicaciones que se consideraron para los primeros casos de estudio [1].
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Figura 1: Característica de Escenario Caso 1[1]

 

Caso 2: Red de media tensión, evaluada en doce escenarios

Para la evaluación de la GD incorporada a nivel de media tensión se utilizó la red que se muestra en la fig.2. Esta red corresponde a un alimentador radial de la ciudad de Santo Domingo, con una tensión nominal de 13,8 kV y cargas desbalanceadas. La red propuesta fue analizada en 12 escenarios de conexión de GD-FV que integran 1 MW, 2 MW y 3 MW conectados de manera concentrada al inicio, al final, en la mitad del alimentador, y de forma dispersa según los escenarios que se describen.
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Figura 2: Característica de Escenario Caso 2[1]

 

El análisis de los parámetros que comúnmente se ven comprometidos a causa de la integración de GD a la red permite identificar los escenarios con mejores condiciones operativas, con la finalidad de establecer y sustentar una metodología para la priorización de proyectos de GD en función del impacto técnico (positivo o negativo) sobre la red. Bajo este criterio, para cada escenario de los dos casos de estudio se obtuvo el perfil de tensión, cargabilidad de las líneas, pérdidas de potencia, desbalance de tensión, distorsión armónica de tensión y de corriente. Adicionalmente, se realizó un análisis de sensibilidad con el objetivo de determinar la distancia máxima a la cual se debe conectar GD-FV, ya sea concentrada o dispersa, desde la cabecera del alimentador, considerando que las pérdidas estén limitadas y que el nivel de tensión se mantenga dentro de niveles permisibles [1]


	 Presentación de Resultados

Niveles de tensión: Tal como se observa en la fig. 3. Los escenarios 1, 2, 4 y 12 que corresponden a la conexión de 60 y 90 kW trifásicos concentrados al final del alimentador presentan niveles de tensión superiores al límite, llegando a valores de 133,96 V, evidenciando que la ubicación y la capacidad de la GD son factores críticos para las condiciones operativas de la red. El escenario de conexión de 30 kW monofásicos dispersos a lo largo del alimentador también genera un impacto debido a que, si bien mejora el nivel de tensión a 130,81 V, está muy cerca del límite máximo, pudiendo superar dicho valor. Para el resto de los escenarios, los niveles de tensión se mantienen dentro del rango admisible.
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Figura 3: Niveles de Tensión en los 12 Casos de Estudio en la Red de Baja Tensión [1]

 

Cargabilidad del transformador: Tal como se observa en la fig. 4. Existe una reducción del flujo de corriente hacia la red principal en los escenarios de conexión dispersa, lo que mejora la eficiencia térmica. Escenarios 4, 5 y 6, que corresponden a la conexión de 60 kW trifásicos, presentan flujo de potencia inverso hacia el transformador, condición que puede afectar la selectividad y direccionalidad de los esquemas de protección diseñados bajo supuestos de flujo unidireccional en redes radiales.
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Figura 4: Cargabilidad del Transformador en los 12 Casos de Estudio de Baja Tensión [1]

 

Cargabilidad de las líneas de distribución: Los resultados muestran que la conexión concentrada de GD-FV con potencias elevadas incrementa la cargabilidad de las líneas de distribución, mientras que la conexión dispersa reduce las corrientes circulantes respecto al caso base, mejorando el desempeño térmico del alimentador. Además, en los escenarios donde se conectan 30 kW trifásicos o monofásicos, ya sea concentrados o dispersos, la cargabilidad es menor en relación con el caso base.
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Figura 5: Cargabilidad de las Líneas de Distribución en los 12 Casos en la Red de Baja Tensión. [1]

 

Pérdidas de potencia: Cuando se incorpora GD a la red, normalmente se espera una reducción en los niveles de pérdidas; sin embargo, este efecto dependerá de la topología de la red, así como de la ubicación de la GD y su capacidad. En Ecuador, un nivel aceptable de pérdidas en un alimentador es de 6,2 %. El análisis de pérdidas indica una disminución promedio del 6,2 % al 5,7 % al integrar GD moderada, confirmando que la inserción de GD-FV puede contribuir a la reducción de pérdidas técnicas únicamente bajo configuraciones de capacidad y ubicación adecuadamente seleccionadas
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Figura 6: Pérdidas de Potencia Totales en los 12 Casos de Estudio en la Red de Baja Tensión [1]

 

Desbalance de tensión: Los resultados muestran un incremento del desbalance de tensión en escenarios con GD-FV monofásica, que se debe a la inyección asimétrica de potencia activa en una sola fase, lo que distorsiona la distribución de corrientes y tensiones en redes inherentemente desbalanceadas, llegando incluso a superar el límite normativo del 2%, cuando la GD-FV se ubica al final del alimentador.
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Figura 7: Desbalance de Tensión en los 12 Casos de Estudio en la Red de Baja Tensión. [1]

 

Distorsión armónica de tensión: En la fig. 8, se observa que los escenarios 1 y 10 correspondientes a la conexión de 90 kW trifásicos y 30 kW monofásicos concentrados al final del alimentador, superan el límite de 5%; Además se puede deducir que conforme se disminuye capacidad de GD, ya sea concentrada o dispersa, el nivel de THDV disminuye, por otro lado, cuando se conecta GD-FV monofásica, el valor del THDV aumenta considerablemente, y en algunos casos puede superar el límite.
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Figura 8: Distorsión Armónica de Tensión en la Red de Baja Tensión. [2]

 

Distorsión armónica de corriente: En la fig. 9 se observa que en los casos 1, 4, 10 y 12, el valor de THDI supera el nivel máximo de 3%, lo que evidencia un impacto relevante asociado a la conmutación de los convertidores electrónicos de potencia.
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Figura 9: Distorsión Armónica de la Corriente en la Red de Baja Tensión. [2]

 

A continuación, se presenta un cuadro resumen de los resultados obtenidos de los 12 escenarios analizados.

 

Tabla 1: Resumen de los Resultados Obtenidos en las Simulaciones de los 12 Escenarios de la Red de Baja Tensión. [2]
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Análisis de Sensibilidad

El análisis de sensibilidad permite determinar la distancia máxima de conexión de la GD-FV. Para dicho análisis se aumenta paulatinamente la distancia del alimentador, inicialmente de 152,92 m a 200 m, 300 m, 400 m, 500 m, 750 m, 1 km y 1,5 km con el fin de evaluar tensiones mínimas y máximas y pérdidas, verificando que estas se mantengan en niveles permisibles. Los resultados se presentan a continuación:

 

Tabla 2: Cuadro Comparativo de Pérdidas en el Alimentador de Baja Tensión. [2]

[image: Image]

 

Tabla 3: Tensión Máxima en la Red de Baja Tensión. [2]

[image: Image]

 

Tabla 4: Tensión Mínima en la Red de Baja Tensión. [2]
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En las tablas 2, 3 y 4 se puede observar que la inserción de potencia de 90 kW en GD-FV (conexión trifásica) supera el límite de pérdidas para conexiones a 500 m, 750 m y 1,5 km.

En lo que respecta a la conexión de GD-FV en redes de media tensión, los estudios arrojan los siguientes resultados:

Niveles de tensión y THD de tensión: En la fig.10 se evidencia que para todos los casos los niveles de tensión se mantienen dentro de los límites operativos permisibles. Así mismo, los resultados indican que la distorsión armónica total de tensión asociada a la integración de GD-FV no supera los valores recomendados, evidenciando que, bajo las configuraciones evaluadas, la calidad de la tensión no se ve comprometida
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Figura 10: Niveles de Tensión de la red de Media Tensión [3]

 

Análisis de IHD de tensión: En todos los escenarios evaluados, los valores de distorsión armónica individual de tensión se mantienen por debajo del umbral del 3%. No obstante, como se observa en la Fig. 11. Las configuraciones con GD-FV conectada de forma dispersa presentan menores niveles de distorsión armónica individual en comparación con aquellas en las que la GD-FV se conecta de manera concentrada, evidenciando una mejora en la calidad de la tensión bajo esquemas de inyección distribuida.
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Figura 11: IHD de Tensión en la Red de Media Tensión con Generación Distribuida Dispersa.[3]

 

Análisis de THD de corriente: En la Fig. 12 se presenta el análisis de la distorsión armónica de corriente para los distintos escenarios evaluados. Los resultados muestran que, bajo configuraciones de conexión concentrada de GD-FV, los niveles de distorsión armónica total de corriente se incrementan de manera significativa. En particular, en los escenarios 1, 4, 5, 6, 7, 8 y 9 —correspondientes a la conexión concentrada de 1 MW, 2 MW y 3 MW al inicio, en la mitad y al final del alimentador—, la distorsión armónica de corriente supera valores del 20%, evidenciando un impacto relevante sobre la calidad de la corriente inyectada a la red.
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Figura 12: Análisis de THD de Corriente en la Red de Media Tensión[3]

 

Las simulaciones evidencian que cuando se conecta GD-FV concentrada, la distorsión armónica de corriente puede ser un factor importante para su priorización, por lo que su valoración conforme al Std IEEE 519 puede ser considerada dentro de los procesos de evaluación de GD implementados por las distribuidoras.

Desbalance de tensión y pérdidas: De los análisis realizados se determina que en ninguno de los escenarios propuestos se produce desbalance de tensión o se superan pérdidas más allá del 3,5%.

Cargabilidad de las líneas de distribución: En el caso base, el alimentador presenta una cargabilidad elevada; sin embargo, al conectar GD, esta se reduce, lo que presenta una mejora en el desempeño de la red.
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Figura 13: Cargabilidad de las Líneas de Distribución en la Red de Media Tensión[2]

 

A continuación, se presenta un cuadro con el resumen de los resultados obtenidos para los 12 escenarios evaluados.

 

Tabla 5: Resumen de los Resultados Obtenidos en las Simulaciones de los 12 Escenarios en la Red de Media Tensión [2]
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Análisis de Sensibilidad: Mediante este análisis se verifica la distancia máxima desde la cabecera del alimentador hasta la que podrá conectarse GD-FV. La longitud inicial del alimentador es de 3318,4 m y se aumentó hasta 15 km, multiplicando cada tramo por un factor de escalamiento para realizar análisis a 3, 6, 9 y 15 km. Las variables de análisis son tensiones y pérdidas, verificando que estos sean mayores a 0,96 p.u. y menores al 10% respectivamente. Los resultados del análisis de sensibilidad muestran que en la red de baja tensión la distancia de conexión impacta significativamente en las pérdidas y el nivel de tensión, mientras que en la red de media tensión la distancia de conexión de GD tiene mayor impacto en las pérdidas de energía.

 

Tabla 6: Tensiones Mínimos en la Red de Baja Tensión[2]
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Las tablas 5 y 6 muestran que en ningún escenario se supera el límite del 10%. Con respecto a la tensión mínima, la distancia máxima de conexión de GD-FV es de 6 Km, con este límite se asegura que, en cualquier escenario de conexión, la tensión no sea inferior a 0.96 p. u, determinándose así que la distancia máxima de conexión de GD-FV concentrada o dispersa es de 6 Km, para no afectar las condiciones óptimas de la red.


	DISCUSION DE RESULTADOS DE LOS ESTUDIOS EN MEDIA Y BAJA TENSIÓN 

Los resultados obtenidos evidencian que el impacto de la GD-FV sobre redes de distribución desbalanceadas depende de manera simultánea de la capacidad instalada, el tipo de conexión, la ubicación a lo largo del alimentador y la distancia desde la fuente. Esta interacción multivariable confirma que evaluaciones basadas en un único criterio, como el perfil de tensión o la cargabilidad del transformador, resultan insuficientes para determinar la factibilidad técnica de proyectos de GD.

En redes de baja tensión, los escenarios con GD-FV concentrada hacia el extremo del alimentador presentan incrementos significativos en el nivel de tensión, llegando a superar los límites normativos cuando la capacidad instalada excede el 60% de la capacidad del transformador. Este comportamiento se explica por la reducción del flujo de potencia activa desde la subestación, combinada con la elevada impedancia del alimentador, lo que amplifica los efectos de elevación de tensión. En contraste, la conexión dispersa de GD-FV distribuye la inyección de potencia a lo largo del alimentador, mitigando las sobretensiones y reduciendo la cargabilidad térmica de las líneas.

El análisis de pérdidas técnicas muestra que la inserción moderada de GD-FV puede contribuir a su reducción; sin embargo, cuando la GD se concentra en un único punto y se aproxima a la capacidad nominal del transformador, las pérdidas aumentan debido al incremento de corrientes circulantes y al flujo de potencia inverso. Este resultado pone de manifiesto que la reducción de pérdidas no es un efecto garantizado de la GD, sino que depende de una adecuada selección de la capacidad y ubicación del proyecto.

La conexión de GD-FV monofásica evidencia ser un factor crítico en redes de baja tensión desbalanceadas. Los resultados muestran incrementos sustanciales en el desbalance de tensión, particularmente cuando la GD se conecta al final del alimentador, superando el límite del 2% en varios escenarios. Este efecto se atribuye a la inyección asimétrica de potencia en una sola fase, lo que confirma la necesidad de considerar explícitamente el desbalance de tensión como criterio prioritario en los procesos de evaluación y priorización de proyectos monofásicos.

En lo que respecta a la calidad del producto eléctrico, los análisis armónicos revelan que la distorsión armónica de tensión y corriente se incrementa de forma más pronunciada en configuraciones concentradas de GD-FV. En redes de baja tensión, varios escenarios superan los límites de distorsión armónica establecidos, especialmente en conexiones monofásicas. En redes de media tensión, aunque la distorsión armónica de tensión se mantiene dentro de los límites, la distorsión armónica de corriente alcanza valores superiores al 20% en escenarios concentrados de 1 a 3 MW, lo que puede comprometer la operación de equipos y protecciones. Estos resultados refuerzan la necesidad de incluir criterios de calidad del producto, conforme a estándares como IEEE 519, dentro de los procesos de priorización técnica.

El análisis de sensibilidad permite identificar la distancia como una variable determinante en el desempeño de la red. En redes de baja tensión, distancias superiores a 400 m desde el transformador generan condiciones no permisibles de tensión y pérdidas para determinadas configuraciones de GD. En redes de media tensión, si bien la tensión se mantiene dentro de los límites hasta distancias mayores, las pérdidas de energía se incrementan de manera significativa más allá de los 6 km desde la cabecera del alimentador. Estos resultados evidencian que la distancia de conexión debe considerarse como un criterio técnico explícito, complementario a la capacidad instalada.

En conjunto, los resultados confirman que la conexión dispersa de GD-FV presenta un impacto técnico más favorable en comparación con configuraciones concentradas, al reducir riesgos asociados a sobretensión, distorsión armónica y sobrecarga de equipos. No obstante, los resultados también indican que la GD concentrada puede ser técnicamente viable siempre que se respeten límites estrictos de capacidad, distancia y calidad del producto, lo que justifica la necesidad de una metodología de evaluación multivariable.

Desde una perspectiva práctica, los hallazgos del estudio respaldan la metodología propuesta como una herramienta eficaz para la priorización técnica de proyectos de GD-FV. La integración simultánea de criterios de tensión, pérdidas, armónicos, desbalance y distancia permite una evaluación más robusta que los enfoques convencionales, aportando información relevante tanto para empresas distribuidoras como para organismos reguladores encargados de autorizar nuevas conexiones.


	Análisis de la Normativa Nacional e Internacional

Con el fin de tomar como referencia los aspectos normativos que se consideran en países como Colombia, Argentina, México y Chile, cuyo análisis y comparación respecto a la normativa ecuatoriana vigente se presentan en la tabla 7.[4]

 

Tabla 7: Cuadro Comparativo de la Normativa de Ecuador, Colombia, Argentina, México y Chile [2][5]
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Esta comparativa resulta útil para tener en cuenta límites y otros aspectos que podrían considerarse para los nuevos proyectos, como, por ejemplo, la distancia máxima de conexión de GD desde el transformador.


	RECOMENDACIONES

	
Propuesta Metodológica: Proyectos Conectados en Baja Tensión

A continuación, se presenta la propuesta para la evaluación de impacto y priorización de proyectos en redes de distribución de media y baja tensión, misma que de forma general se desarrolla en 2 etapas:


- La primera fase considera simulaciones para obtener resultados de los parámetros eléctricos de impacto: desbalance de tensión, distorsión armónica de tensión, distorsión armónica de corriente y nivel de tensión.

- La segunda fase corresponde a la evaluación de los parámetros, comparándolos con los límites establecidos.




	
		Proyectos de GD-FV monofásicos



La fig. 14 muestra la metodología propuesta [2].
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Figura 14: Metodología de Selección de GD Monofásica en la Red de baja Tensión.[2]

 

Según la propuesta metodológica, los aspectos más importantes a considerar para la selección de proyectos de GD-FV conectados en redes de baja tensión son los siguientes [2]:


	
		La potencia máxima por norma será de 100 kW; sin embargo, deberá tomarse en cuenta que la potencia de GD no superará el 90% de la capacidad del transformador de distribución. 

		Dado que se evidenció que las pérdidas se incrementan significativamente con proyectos mayores de 90 kW a más de 500 m, la metodología recomienda limitar la conexión de GD a un máximo de 400 m.

		La fase a la cual se conecte la GD no debe superar el 80% de la capacidad de la fase del transformador.

		En proyectos concentrados de 1–3 MW (Esc. 1, 4, 7), los niveles de distorsión de corriente superaron el 20%, siendo el efecto adverso más crítico. 



En el caso de no cumplir con uno de los aspectos técnicos, el proyecto se vuelve no prioritario y se deben realizar estudios adicionales de flujos de carga, flujos de potencia monofásicos, estudios de cortocircuito, estudios de protección y un mayor análisis de impacto en la red.

Proyectos de GD-FV trifásicos

La priorización sigue la misma sistemática de la metodología de GD monofásica, con la diferencia de que además se consideran estudios de cargabilidad del transformador y del alimentador; así como el análisis de distorsión armónica de tensión, distorsión armónica de corriente y niveles de tensión [2].
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Figura 15: Metodología de Selección de GD Trifásica Conectada a la Red de Baja Tensión [2]

 

Los aspectos más relevantes que considerar respecto a los proyectos de GD trifásicas son[2]:


	
		Flujos de potencia trifásicos, pérdidas técnicas, análisis de cortocircuito y estudios de protecciones.

		En el caso de no cumplir uno de los aspectos técnicos, el proyecto se vuelve no priorizado.



	Propuesta Metodológica: Proyectos Conectados en Media Tensión.

A continuación, se presenta la metodología de selección para la red de media tensión de fig.16:
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Figura 16: Metodología de Selección de GD-FV Conectada a Red de Media Tensión[2]

 

La metodología para la selección de GD-FV conectada a red de media tensión determina lo siguiente [2]:


	
		Capacidad de proyectos: Actualmente los proyectos están limitados a 2 MW, con la posibilidad de aumentar la capacidad a 3 MW con los estudios pertinentes; sin embargo, de los análisis presentados se determina que, para no afectar el desempeño de la red, la capacidad no debe superar el 90% de la capacidad del transformador; aunque límites óptimos de penetración de GD para evitar sobretensiones se ubican entre el 50 % y 70 % de la capacidad del transformador a nivel internacional.

		Distancia máxima: El análisis de sensibilidad determina que la distancia límite es de 6 km desde la cabecera, asegurando así no superar los límites de distorsión armónica.

		El límite de desbalance de tensión máximo es de 2%; sin embargo, en algunos países, el límite está en 3%.

		La capacidad del alimentador no debe superar el 80% al instalar la GD Fotovoltaicos.

		La distorsión armónica total de tensión no debe superar el 5%, pero se recomienda realizar análisis armónicos individuales.

		Las pérdidas no deben ser mayores del 6,2%; sin embargo, a nivel internacional se utilizan límites de 10%.

		En el caso de no cumplir con los criterios técnicos, el proyecto entra a ser no priorizado. El interesado en el proyecto debería realizar mejoras para reducir el impacto en la red de baja y media tensión. Adicional, se debe considerar estudios complementarios de flujos de carga, estudios de cortocircuitos, estudio de protecciones y análisis de impacto en la red



	CONCLUSIONES

Este trabajo presenta una metodología técnica para la evaluación y priorización de proyectos de generación distribuida fotovoltaica, basada en un análisis multivariable del impacto en redes de distribución desbalanceadas de baja y media tensión. A diferencia de los enfoques tradicionales centrados en indicadores individuales, la metodología integra parámetros de calidad del producto, cargabilidad, pérdidas, desbalance de tensión y distancia de conexión, proporcionando una visión integral del comportamiento de la red.

Los resultados obtenidos a partir de simulaciones en redes reales permiten identificar umbrales técnicos relevantes para la planificación de la GD-FV. En redes de baja tensión, se evidencia que la conexión concentrada de GD con capacidades superiores al 60% de la capacidad del transformador incrementa el riesgo de sobretensión, flujo de potencia inverso y aumento de pérdidas. Asimismo, la conexión monofásica, especialmente al final del alimentador, produce incrementos significativos en el desbalance de tensión y en la distorsión armónica.

En redes de media tensión, los niveles de tensión se mantienen dentro de los límites permisibles en todos los escenarios analizados; sin embargo, la distorsión armónica de corriente se incrementa considerablemente en configuraciones de GD concentrada, alcanzando valores superiores al 20%, lo que resalta la necesidad de incorporar este parámetro en los procesos de priorización técnica.

La metodología permite establecer distancias máximas de conexión de aproximadamente 400 m para redes de baja tensión y 6 km para redes de media tensión, garantizando condiciones operativas aceptables en términos de tensión y pérdidas. Estos valores no son universales, pero constituyen referencias técnicas útiles para redes con características similares.

Finalmente, los resultados confirman que la conexión dispersa de GD-FV mitiga los efectos negativos asociados a configuraciones concentradas; sin embargo, la viabilidad de proyectos concentrados dependerá del cumplimiento estricto de los criterios técnicos establecidos. La metodología propuesta se presenta como una herramienta aplicable por empresas distribuidoras y entes reguladores para mejorar la toma de decisiones y asegurar una integración técnica eficiente de la generación distribuida
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