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Resumen:

This paper presents a deep learning-based methodology for short-term stability prediction in electrical systems with high renewable generation penetration. Based on dynamic simulations performed on the 39-bus IEEE system, including scenarios with wind and photovoltaic integration, a database was constructed to train a hybrid recurrent convolutional neural network (RCNN-EE) model. The model uses strategically selected electrical variables to capture both transient dynamics and voltage collapse phenomena, achieving accurate classification of the system state. The results obtained demonstrate superior performance compared to traditional architectures, achieving outstanding metrics even under unbalanced conditions. In addition, its applicability in real time is validated, with inference times of less than 50 milliseconds, which demonstrates its potential for implementation in electrical system protection and control schemes.
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Abstract:

Power generation from renewable resources and smart grid integration are trending topics in power systems nowadays. Nevertheless, they are strengthening the lack of inertia at the operation stage of the modern power systems. This fact has endorsed the emergence of new digital inertia emulation techniques in order to tackle this operative constraint. One of these techniques is the so-called synchronverter (SV) technology, which tries to mimic the operation of a synchronous generator (SG) using DC/AC inverters. Indeed, a SV lets power systems to control grid-connected renewable energy power plants and avoid losing voltage and frequency stability. This paper introduces a variation of the original model of a SV, which is able to synchronize itself with the electrical grid before the connection and track the frequency of the grid after it. Likewise, its power circuit is modified to include a photovoltaic (PV) system and a Maximum Power Point Tracker (MPPT) as DC voltage sources. It and the calculation of the SV parameters at 60-Hz frequency provide a grade of novelty to this research. Finally, the simulation results in MATLAB verify a reliable operation of the proposed SV under variations of active (P) and Reactive (Q) powers over a test grid.
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INTRODUCCIÓN

La creciente penetración de fuentes de generación renovable, especialmente eólica y fotovoltaica, está modificando el comportamiento dinámico de los sistemas eléctricos modernos. Estas tecnologías han reemplazado progresivamente a los generadores convencionales, reduciendo así la inercia del sistema y alterando las reservas de potencia activa y reactiva frente a perturbaciones severas [1]. Como consecuencia, los sistemas eléctricos presentan una mayor vulnerabilidad frente a fenómenos dinámicos que comprometen su estabilidad en escalas de tiempo cortas, los cuales pueden clasificarse en dos tipos principales de inestabilidad: la transitoria (ET) y la de tensión de corto plazo (ETCP) [2]. La ET se refiere a la capacidad del sistema para mantener el sincronismo de sus generadores frente a una perturbación severa, como un cortocircuito o la pérdida repentina de generación. Por otro lado, la ETCP está dominada por cargas dinámicas, principalmente motores de inducción y dispositivos electrónicos, los cuales durante fallas pueden exigir grandes cantidades de potencia reactiva, causando colapsos de tensión [3].

Los enfoques clásicos para evaluar estos tipos de inestabilidades utilizan simulaciones dinámicas no lineales o índices como el Short-Term Voltage Stability Index (SVSI), pero presentan limitaciones para su aplicación en tiempo real, debido a su elevado costo computacional y dependencia de modelos precisos [4]. Frente a este desafío, los métodos basados en datos han ganado protagonismo, impulsados por la creciente disponibilidad de mediciones en tiempo real proporcionadas por Unidades de Medición Fasorial (PMU) [5]. Estas unidades permiten capturar con alta resolución temporal variables eléctricas clave (magnitud de tensión, ángulo de tensión, frecuencia), abriendo la puerta al uso de técnicas de aprendizaje automático para evaluar en tiempo real el estado dinámico del sistema.

Entre las primeras aplicaciones de inteligencia artificial, se destacan métodos de clasificación con árboles de decisión, máquinas de soporte vectorial (SVM) y bosques aleatorios [6]. Sin embargo, estos enfoques de aprendizaje automático requieren un análisis detallado de sus características y no capturan adecuadamente las relaciones espaciales ni temporales presentes en los datos. Mientras que los métodos de aprendizaje profundo (DL) permiten extraer automáticamente representaciones espaciotemporales directamente de los datos, logrando una capacidad predictiva superior. Aunque tradicionalmente los fenómenos de estabilidad transitoria y de tensión de corto plazo se han estudiado por separado, existe un creciente consenso en que su análisis conjunto es esencial, debido a que ambos tipos de inestabilidad se desarrollan en la misma ventana de tiempo afectando negativamente al sistema de potencia particularmente en condiciones de alta penetración de energías renovables [7].

Por su parte, en [8] se propone una metodología de evaluación de la vulnerabilidad dinámica del sistema eléctrico, tomando en consideración cinco diferentes síntomas de alerta del sistema tales como: inestabilidad transitoria, inestabilidad oscilatoria, inestabilidad de voltaje de corto plazo, inestabilidad de frecuencia de corto plazo y sobrecargas. Recientes avances proponen superar la separación tradicional entre ET y ETCP mediante la evaluación simultánea de ambos fenómenos. En particular, el estudio disponible en [9], plantea una metodología basada en Redes Neuronales Convolucionales Recurrentes (RCNN) que clasifica el estado de estabilidad de corto plazo (EECP) como estable, inestable por pérdida de sincronismo o inestable por colapso de tensión. Esta propuesta destaca por integrar variables de magnitud de tensión y ángulo de tensión medidas en barras clave del sistema, logrando una alta precisión predictiva aún bajo escenarios severos. Sin embargo, dicha metodología no contempla la integración de generación renovable en los escenarios analizados.

 

Por lo tanto, el presente trabajo tiene como objetivo extender la metodología de evaluación predictiva de [9], incorporando modelos dinámicos de generación renovable. A través de una base de datos construida con series temporales, se entrena un nuevo modelo RCNN para estimar el estado de estabilidad de corto plazo en sistemas con alta penetración de renovables.

El presente trabajo se estructura en cinco capítulos que describen el procedimiento para la evaluación del estado de estabilidad del sistema. En el Capítulo 2 se desarrolla el sustento técnico y matemático necesario para comprender el fenómeno de la estabilidad de corto plazo y su evaluación con técnicas de aprendizaje profundo. El Capítulo 3 expone la metodología implementada, mientras que el Capítulo 4 presenta el análisis de los resultados obtenidos. Finalmente, el Capítulo 5 resume las principales conclusiones del estudio.


	MARCO TEÓRICO

El siguiente capítulo tiene como objetivo brindar una visión general de los conceptos fundamentales relacionados a la estabilidad de corto plazo en sistemas eléctricos de potencia (SEP).


	 Estabilidad de Corto Plazo

La estabilidad en sistemas de potencia se define como la capacidad de un SEP para recuperar un estado de equilibrio tras una perturbación, manteniendo sus variables eléctricas dentro de límites operativos aceptables. Tradicionalmente, esta se ha clasificado en estabilidad angular, de tensión y de frecuencia. No obstante, la integración masiva de generación renovable basada en inversores (Inverter-Based Resources, IBR) introduce dinámicas electromagnéticas rápidas que no están presentes en las máquinas síncronas convencionales.

De acuerdo con la extensión de la clasificación clásica de estabilidad propuesta en [10], la presencia de convertidores electrónicos da lugar a una nueva categoría: la estabilidad impulsada por convertidores. Esta categoría se divide en fenómenos de interacción lenta y fenómenos de interacción rápida, relacionados con los lazos de control de los convertidores y su interacción con la red. En el presente trabajo, si bien se reconoce la relevancia de estas nuevas categorías, el alcance se centra específicamente en la estabilidad angular transitoria y la estabilidad de tensión de corto plazo. Por su parte, el análisis detallado de las interacciones de control de alta frecuencia se propone como una línea de trabajo futuro [11].


	Estabilidad de tensión de corto plazo

La estabilidad de tensión de corto plazo está fuertemente influenciada por el comportamiento dinámico de las cargas, particularmente los motores de inducción (MI), que pueden estancarse y provocar una alta demanda de potencia reactiva. Por lo tanto, si la regulación y el soporte de tensión no alcanzan a cubrir esa demanda, la tensión no se recupera y el sistema deriva a la inestabilidad de tensión en segundos [11].


	Estabilidad transitoria

La ET se refiere a la capacidad del sistema para mantener el sincronismo de los generadores sincrónicos después de perturbaciones grandes. Si el equilibrio entre par eléctrico y mecánico no se restablece, el ángulo rotórico crece de manera sostenida y se pierde la sincronía [12].

Además, con la creciente penetración de generación renovable, es necesario evaluar de manera conjunta la ET y la ETCP, ya que ambas comparten una misma ventana temporal, pero responden a mecanismos distintos. Por ello, resulta primordial aplicar metodologías que discriminen si la inestabilidad es provocada por pérdida de sincronismo o por colapso de tensión [13].


	Modelamiento de la dinámica del SEP

Para examinar el comportamiento dinámico de un sistema eléctrico, es indispensable representar matemáticamente cada uno de sus componentes físicos mediante ecuaciones algebraico-diferenciales (DAE), las cuales describen la evolución temporal del sistema a partir de sus condiciones iniciales. En [9], describe el uso de modelos de sexto orden para generadores sincrónicos, modelos de quinto orden para MI y modelos ZIP para cargas estáticas. Esta representación asegura que fenómenos como estancamiento o caídas de velocidad durante fallas sean correctamente simulados.


	Modelación de Generación Renovable

El modelado de fuentes renovables basadas en convertidores de potencia completa (full converter), como la fotovoltaica (FV) y la eólica tipo 4, es fundamental para el análisis dinámico de sistemas de potencia, ver Fig. 1. Estas unidades se conectan mediante electrónica de potencia que desacopla mecánicamente la generación de la red, permitiendo un control preciso de la potencia activa y reactiva inyectada [14], [15].
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Figura 1: Representación Esquemática de un Generador Eólico y una Planta Fotovoltaica Conectados a la Red [14], [16]

 

En este contexto, la base de los modelos IBR es un lazo de control interno y rápido de corriente [17]. Es importante aclarar que, si bien la literatura técnica diferencia explícitamente las arquitecturas de seguimiento de red (Grid-Following, GFL) y de formación de red (Grid-Forming, GFM), la clasificación de un modelo genérico no depende solo de su denominación, sino de su esquema de control.

Esta investigación analiza específicamente el rendimiento de inversores configurados para el seguimiento de red, con el fin de inyectar potencia y proporcionar servicios auxiliares de frecuencia y tensión. Cabe señalar, sin embargo, que la arquitectura de los modelos genéricos utilizados posibilita, a través de la modificación específica de sus parámetros y lazos de control, emular comportamientos propios de la formación de red. Dicha versatilidad es fundamental para asegurar la estabilidad del sistema frente a perturbaciones significativas.

Estos generadores se modelan mediante bloques validados por el WECC: REGC_A para el generador, REEC_A como controlador eléctrico, WTGT_A para el tren mecánico (en eólica), y REPC_A como controlador a nivel planta, ver Fig. 2 [18].
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Figura 2: Diagrama de Bloques Funcionales del Modelo Dinámico Tipo 4 [18]


	Aprendizaje Profundo

El aprendizaje automático es un campo de la inteligencia artificial que permite a los sistemas aprender automáticamente a partir de datos. Los algoritmos se clasifican en aprendizaje supervisado, no supervisado y por refuerzo. Dentro del aprendizaje supervisado, existe el aprendizaje profundo, que se caracteriza por utilizar una cascada de múltiples capas de unidades de procesamiento no lineal para la extracción y transformación de características de forma automática. Cuando la información de entrada consiste en series temporales de diferentes variables, como en el caso del análisis dinámico de estabilidad de sistemas eléctricos, es necesario emplear modelos que puedan capturar tanto las características espaciales como las temporales de los datos. Para ello, se puede utilizar una arquitectura híbrida basada en aprendizaje profundo denominada Red Neuronal Convolucional Recurrente. Esta red combina una primera etapa convolucional (CNN), encargada de extraer patrones espaciales relevantes de la señal (por ejemplo, relaciones entre diferentes barras), con una segunda etapa formada por capas LSTM, que permiten extraer las dependencias temporales en la evolución de las variables eléctricas durante la simulación. Las capas densas posteriores se encargan de relacionar e integrar las características o patrones extraídos por las capas LSTM o CNN, permitiendo así una representación conjunta de la dinámica del sistema. Finalmente, una capa de salida con la función de activación correspondiente (por ejemplo, softmax o sigmoide) clasifica el estado de estabilidad del sistema [19].


	METODOLOGÍA

Este capítulo presenta el procedimiento general desarrollado para la evaluación predictiva del EECP mediante un modelo de aprendizaje profundo (RCNN-EE) [9]. En esta versión, se ha incorporado generación renovable (fotovoltaica y eólica) como parte de los escenarios de operación, lo que permite además analizar el impacto de su penetración sobre la estabilidad dinámica del sistema bajo estudio.
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Figura 3: Marco General de la Metodología Implementada

 

La Fig. 3 ilustra el esquema general de la metodología, cuya primera etapa corresponde a la generación de la base de datos. Esta se compone de: a) series de tiempo (ST) de variables eléctricas del sistema obtenidas mediante simulaciones dinámicas ante diversas contingencias, bajo un amplio espectro de escenarios operativos que consideran la integración de generación solar y eólica; y b) la clasificación y etiquetado del estado de estabilidad de corto plazo, utilizando el monitoreo de una variable que refleje de manera efectiva la ocurrencia de un fenómeno de inestabilidad de tensión de corto plazo.

La segunda etapa contempla el entrenamiento fuera de línea del modelo de red neuronal convolucional recurrente. Este modelo recibe como entrada las variables eléctricas generadas en la primera etapa y produce como salida la clasificación del estado de estabilidad de corto plazo del sistema, permitiendo además analizar su desempeño mediante métricas específicas y comparar su eficacia con otras arquitecturas de aprendizaje profundo. Finalmente, el modelo entrenado es aplicado en línea para realizar la evaluación del EECP bajo la ocurrencia de alguna contingencia en tiempo real.


	Base de Datos

La base de datos utilizada para el entrenamiento y validación del modelo se construyó a partir de simulaciones dinámicas realizadas en el software PowerFactory DIgSILENT sobre el sistema IEEE New England de 39 barras. Se incorporaron nuevas unidades de generación renovable (fotovoltaica y eólica) conectadas en distintas barras. La ubicación de estas fuentes en los nodos del sistema se realizó en función del potencial del recurso primario disponible, complementando así la generación convencional, conforme al análisis desarrollado en [13].


	Escenarios de operación

Se utilizaron múltiples escenarios de operación considerados en [9]. Los cuales se agruparon en bandas horarias (pico, valle y resto), mediante el algoritmo K-Means, con el objetivo de establecer un esquema de despacho que integre fuentes de generación renovable [13]. En este contexto, la generación fotovoltaica (FV) se incorpora exclusivamente durante la franja horaria correspondiente a la condición de carga “resto”, mientras que la generación eólica se considera constante a lo largo de las tres bandas horarias. De esta manera, se configuran escenarios de operación que integran el despacho económico de energías renovables, en función de la capacidad disponible del sistema de prueba. En este análisis, se consideraron los costos de generación fotovoltaica y eólica como nulos dentro del Optimal Power Flow (OPF), permitiendo evaluar el despacho económico del sistema bajo diferentes condiciones de carga. La ubicación de las plantas se definió con base en el aprovechamiento de los recursos energéticos disponibles. A partir de las coordenadas geográficas aproximadas del sistema IEEE de 39 barras (localizado en el noreste de EE. UU.) y mediante el uso de datos del Global Solar Atlas y del Global Wind Atlas, se identificaron las zonas con mayor potencial renovable. Como resultado, se extendió el sistema original a 45 barras, situando la generación renovable en las barras 32, 33 y 34 donde ya se tiene generación convencional. En este sentido, de acuerdo con las configuraciones típicas de parques renovables, se integró una capacidad total de 1200 MW, se incorporaron 600 MW solares mediante tres plantas fotovoltaicas de 200 MW cada una, y 600 MW eólicos a través de tres parques de igual capacidad unitaria.

Para el análisis de estabilidad de corto plazo, las fuentes renovables se modelaron como constantes debido a que la ventana temporal de estudio es de apenas 5 segundos. Para considerar la incertidumbre y garantizar la validez de los resultados, se realizó un análisis de robustez variando la generación renovable en un 10%. Al reducir la inyección en este porcentaje, se verificó mediante los modelos predictivos que la clasificación del estado de estabilidad (estable, ET o ETCP) mantuvo su precisión para los casos evaluados. Este resultado confirma que la metodología es robusta ante incertidumbres de despacho renovable, aunque un análisis más profundo de la incertidumbre se plantea como trabajo futuro. Por último, la operación del sistema se configuró conforme a la Ley argentina 27.191, la cual exige una penetración mínima de energías renovables equivalente al 20% del consumo total. Los escenarios de simulación se diseñaron para evaluar condiciones de operación críticas, alcanzando para ello un nivel de penetración promedio del 20%.


	Simulación de contingencias N-1

Sobre cada escenario de operación definido, se llevaron a cabo simulaciones de contingencias de tipo N-1, incluyendo la salida de unidades de generación convencional y cortocircuitos trifásicos en líneas de transmisión, con su posterior despeje a los 80 ms. Se decidió no modelar la salida de centrales fotovoltaicas y eólicas para preservar la condición de máxima penetración renovable, permitiendo así evaluar el mayor impacto de estos recursos sobre la estabilidad del sistema y poder evaluar el impacto de las FER en los mismos escenarios de operación y contingencias analizados sin FER. El análisis detallado de la pérdida simultánea de generación renovable y sus efectos en la operación del sistema se plantea como una línea de investigación para trabajos futuros. Estos dos tipos de contingencias fueron seleccionados por representar perturbaciones severas que pueden comprometer la estabilidad del sistema eléctrico, llegando incluso a provocar cortes parciales o totales del suministro. Asimismo, se implementaron modelos dinámicos para las plantas de generación solar y eólica, en todos los casos considerando estrategias de control de tensión. Las simulaciones se realizaron en un horizonte temporal de 5 segundos, permitiendo capturar con suficiente resolución la evolución dinámica de las variables del sistema ante los fenómenos de inestabilidad de corto plazo.


	Selección de las variables de entrada

La correcta selección de variables eléctricas de entrada es un aspecto crucial en el desempeño de las máquinas de aprendizaje. Esta selección debe fundamentarse en la relación existente entre dichas variables y los fenómenos dinámicos que se pretenden detectar, a fin de maximizar la capacidad predictiva del modelo. Por ejemplo, el estudio presentado en [20] que identifica generadores críticos ante inestabilidad transitoria, las variables seleccionadas incluyen la magnitud de tensión, ángulo de tensión y ángulo del rotor (δ) de los generadores sincrónicos. Esta última variable es representativa en la dinámica transitoria, ya que refleja las oscilaciones del rotor frente a grandes perturbaciones, constituyéndose en el principal indicador de pérdida de sincronismo. Por otro lado, [2] se centra en la evaluación predictiva de la estabilidad de tensión de corto plazo. En este contexto, se incorpora la magnitud y ángulo de la tensión de las barras, al igual que la velocidad de los motores de inducción, siendo esta última variable un indicador sensible para capturar el fenómeno de la ETCP.

En este sentido, en el presente trabajo se seleccionan las siguientes variables de entrada: magnitud de tensión (|V|) ángulo de tensión (θ), velocidad de los motores de inducción (ω) y ángulo del rotor (δ) de los generadores sincrónicos. Por lo tanto, las variables |V| y θ se derivan de las mediciones fasoriales sincronizadas por PMU, mientras que ω se calcula de forma indirecta empleando la ecuación dinámica del rotor, las mediciones de tensión y los parámetros característicos de los motores de inducción [21].  Por último, el ángulo del rotor δ se obtiene a partir de las mediciones de fase de tensión sincronizadas por PMU,  análogo al cálculo realizado por ciertas PMU avanzadas [22].

La extracción de estas variables se realiza selectivamente únicamente en las barras donde se encuentran los motores de inducción y en las barras que contienen generadores convencionales o convencionales y renovables. De este modo, se conforma un conjunto de variables que permite abordar de forma simultánea y eficiente la predicción del estado de estabilidad de corto plazo tanto transitoria como de tensión. Cabe señalar que no se extraen variables directamente de las plantas FV y eólicas, ya que su comportamiento operativo está intrínsecamente ligado a la respuesta dinámica observada en las PMU de las barras de generación donde están conectadas.


	Etiquetado del estado de estabilidad

Como parte fundamental de la metodología, una vez definidas las variables de entrada del modelo de aprendizaje profundo, es necesario establecer las salidas, las cuales se determinan mediante la metodología de evaluación definida en [9] y analizada en [13]. Dicha metodología se compone de dos etapas diferenciadas que se muestran en la Fig. 4.

En la primera etapa, se realiza un ajuste de las condiciones de simulación, considerando tanto la contingencia N-1 como el escenario de operación correspondiente. A partir de estas condiciones iniciales, se ejecuta la simulación dinámica en el dominio del tiempo. Durante esta simulación, se monitorea el comportamiento del ángulo del rotor de los generadores. Si la máxima separación angular entre cualquier generador y el generador de referencia supera el límite teórico de 180°, es decir, |∆| 𝛿 𝑚𝑎𝑥 > 180°, se considera que uno o más generadores han perdido el sincronismo. Este fenómeno suele manifestarse también en forma de oscilaciones de tensión entre valores altos y bajos en distintas barras del sistema, por lo que el caso se clasifica como inestable. Por otro lado, si |∆| 𝛿 𝑚𝑎𝑥 < 180°, se considera que el sistema permanece estable frente a la perturbación evaluada. 

La segunda etapa tiene como objetivo identificar el mecanismo principal de inestabilidad presente en aquellos casos previamente clasificados como inestables. Para ello, se realiza una nueva simulación en el dominio del tiempo, esta vez ajustando el sistema para desconectar la totalidad de la carga motórica. Si dicha acción de control permite que el sistema recupere un estado estable, se concluye que las cargas dinámicas fueron las responsables del comportamiento inestable, clasificando el caso como inestable por pérdida de estabilidad de tensión de corto plazo. En cambio, si la desconexión de las cargas dinámicas no modifica la condición de inestabilidad, se interpreta que los generadores sincrónicos tienen mayor protagonismo en el fenómeno observado, por lo tanto, el caso se clasifica como inestable por pérdida de estabilidad transitoria.

La información correspondiente al EECP, obtenida a partir de esta metodología, se codifica mediante el vector 𝑐. Dicho vector está estructurado en tres niveles, cada uno de los cuales representa un posible estado del sistema: estable, inestable por ET o inestable por ETCP. Es decir:
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Esta información sobre la evaluación del EECP que contiene el vector 𝑐, es utilizada para el entrenamiento del modelo RCNN-EE.
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Figura 4: Diagrama de Flujo de la Metodología de la EECP



Modelado RCNN-EE

La arquitectura empleada en este estudio corresponde a una combinación de algoritmos de aprendizaje profundo. Por un lado, se utilizan redes neuronales convolucionales (CNN), cuya función principal es la extracción de características espaciales. Por otro lado, se integran redes neuronales recurrentes con memoria a largo y corto plazo (LSTM), las cuales permiten capturar características temporales. La integración secuencial de ambas estructuras da lugar al modelo RCNN.


	Procesamiento de datos

Antes de entrenar el modelo, los datos deben organizarse en un formato estructurado que permita capturar tanto la información espacial (por barra) como la temporal (evolución en el tiempo) de las variables del sistema. Para ello, se construye un tensor multidimensional, que es una estructura de datos utilizada frecuentemente en aprendizaje profundo para representar conjuntos de datos complejos [23].

El conjunto de datos utilizado corresponde a un tensor de dimensiones (N,15,16,4), que representa series de tiempo de 15 muestras para 16 barras del sistema con carga dinámica y generación, y 4 variables eléctricas. Los datos se dividen en subconjuntos de entrenamiento y prueba (80%-20%). Posteriormente, se aplica una normalización global, calculando la media y desviación estándar sobre todas las muestras y barras del conjunto de entrenamiento.


	Entrenamiento

La arquitectura del modelo RCNN-EE se presenta en la Fig. 5. En primer lugar, se encuentran las capas convolucionales, seguidas de una capa densa (FC) que relaciona las características extraídas. Estas son luego procesadas por las capas LSTM, y finalmente, una segunda capa densa realiza la clasificación del estado del sistema como estable, inestable por ET o inestable por ETCP.
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Figura 5: Estructura del Algoritmo de Aprendizaje RCNN-EE

 

El modelo se entrenó utilizando la función de pérdida categórica (categorical crossentropy), adecuada para problemas de clasificación multiclase con etiquetas codificadas en formato one-hot. Como algoritmo de optimización se empleó Adam, ampliamente utilizado en tareas de aprendizaje profundo por su eficiencia en la convergencia. Durante el entrenamiento se incorporaron mecanismos de regularización para evitar el sobreajuste. En particular, se utilizó la técnica de Dropout en las capas densas, desconectando aleatoriamente un porcentaje de las neuronas en cada iteración. Además, para abordar el desbalance de clases, se aplicaron técnicas de oversampling (sobremuestreo) y asignación de pesos específicos a cada clase en la función de pérdida, lo que permitió mejorar la capacidad del modelo para identificar con mayor precisión los estados inestables.


	Métricas de Desempeño

Una vez finalizado el entrenamiento con el conjunto de datos de entrenamiento, el modelo RCNN se evalúa utilizando el conjunto de prueba, a fin de medir su capacidad de generalización. El desempeño se analiza mediante la matriz de confusión y cuatro métricas específicas.


	
		Accuracy (ACC): Exactitud global.

		Correct Unstable (CU): Proporción de inestables correctamente identificados.

		Stable Sensitivity (SS): Sensibilidad para la clase estable.

		G-Mean: Media geométrica entre CU y SS.



	Aplicación del Modelo RCNN-EE en Tiempo Real

La finalidad de este estudio es que el modelo de aprendizaje profundo desarrollado pueda ser aplicado en tiempo real, permitiendo así una evaluación oportuna del estado de estabilidad del sistema eléctrico. Esta capacidad de predicción en línea resulta fundamental para sistemas de protección y control, ya que posibilita la toma de decisiones correctivas de manera anticipada ante eventos que comprometan la estabilidad del sistema.


	ANÁLISIS DE RESULTADOS

En este capítulo se presentan los resultados obtenidos a partir de la implementación de la metodología propuesta en [9] considerando sistemas con alta penetración de generación basada en fuentes de energía renovable (FER).


	Caso de Estudio

El caso de estudio corresponde al sistema IEEE New England de 39 barras, el cual fue modificado para incluir 600 MW de generación eólica y 600 MW de generación fotovoltaica. Las nuevas plantas renovables se conectaron en las barras 32, 33 y 34, seleccionadas por su alto recurso primario (irradiancia y velocidad de viento), ver Fig. 6. El modelo de generación renovable utilizado fue del tipo 4 disponible en la librería de PowerFactory y operando bajo un modo de control de tensión local (modo 3). En el estudio se analizaron 9883 escenarios operativos con simulaciones dinámicas de contingencias N-1, que incluyen pérdidas de generación y cortocircuitos trifásicos. La base de datos dinámica se generó mediante scripts DPL en PowerFactory, mientras que los datos estáticos y el OPF se resolvieron en Python empleando PYPOWER. Los escenarios se agruparon en las tres bandas horarias usando clustering con K-Means, considerando que la generación eólica opera en todas las franjas, mientras que la FV sólo en la banda resto.  Cada caso fue posteriormente clasificado en una de las tres clases de estabilidad: estable, inestable por pérdida de sincronismo (ET) o inestable por colapso de tensión (ETCP), conformando así una base de datos etiquetada apta para entrenamiento y validación del modelo predictivo.

Finalmente, esta base de datos etiquetada permite evaluar la capacidad del modelo RCNN-EE, entrenado sin FER, para predecir adecuadamente en escenarios que las incluyen. En caso de que los resultados no sean satisfactorios, dicha base sirve también para entrenar una nueva RCNN-EE adaptada a la nueva composición del parque de generación.

 

[image: Patrón de fondo

El contenido generado por IA puede ser incorrecto.]

Figura 6: Sistema New England 39 Barras con Penetración de Energías Renovables



Evaluación del Clasificador RCNN-EE Entrenado sin FER

En esta sección se analiza el modelo RCNN-EE entrenado en [9]. Para ello, se utilizó la nueva base de datos generada a partir de la metodología explicada anteriormente, que incorpora integración de generación renovable (eólica y solar). La Tabla 1 resume los resultados de clasificación obtenidos por el modelo RCNN-EE de [9] frente a la aplicación de la metodología de etiquetado en la base de datos del sistema con FER [13]

 

Tabla 1: Comparación de Clasificación RCNN-EE vs Etiquetado en Sistema con FER
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A partir de los resultados de la Tabla 1, se observa una discrepancia considerable, especialmente en la clase "Estables", donde el modelo subestima la cantidad de casos estables y sobreestima los casos inestables. Esto indica que el modelo RCNN-EE, al haber sido entrenado con una topología de red distinta y sin considerar generación renovable, pierde capacidad predictiva ante nuevos escenarios con alta penetración renovable. Este análisis justifica la necesidad de reentrenar el modelo utilizando la nueva base de datos.


	Entrenamiento y Diseño de Modelos

En este apartado se describe brevemente el diseño de las máquinas de aprendizaje profundo utilizados, así como el proceso de entrenamiento aplicado.


	Diseño del modelo

El modelo de aprendizaje profundo consta de un módulo CNN con tres capas convolucionales (64, 32 y 4 filtros de tamaño 3×3) con función de activación ReLU, seguidas de max pooling 2×2, normalización por lotes y dropout 0.1 para evitar sobreajuste. El resultado se aplana (flatten) y pasa a 32 neuronas FC (ReLU). Luego, la salida alimenta un módulo LSTM de 64 neuronas, con función de activación tanh y normalización por capas, encargado de procesar las dependencias temporales. Finalmente, las características extraídas atraviesan una FC de 64 neuronas (ReLU) y un clasificador softmax de 3 salidas, que entrega la probabilidad de pertenencia a cada clase de estabilidad. Para una mejor apreciación se presenta la Fig. 7.

Durante el entrenamiento se ajustaron los hiperparámetros más relevantes, como la tasa de aprendizaje (1×10⁻³), el tamaño de lote (256), el número de épocas (600). Se empleó la función de pérdida categorical crossentropy y el optimizador Adam.

 

Figura 7: Arquitectura del Modelo RCNN-EE

 

Además, se aplicaron pesos de clase para compensar el desbalance del conjunto de datos original, el cual presentaba una marcada minoría de escenarios de inestabilidad de tensión de corto plazo (424 casos de ETCP sobre un total de 9883). Para mejorar el entrenamiento del modelo, se realizó un proceso de oversampling mediante la duplicación de dichos casos de ETCP, resultando en un conjunto de datos final de 10307 casos. Sobre este conjunto, se determinaron los pesos de penalización según la Ec. (2).
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Donde  es el paso de la clase ,  es el número total de casos de estudio (10307),  es el número de casos de estudio de la clase  (estable: 7930, inestable por ET: 1529, inestable por ETCP: 848), y  es el número de clases que en este caso es 3. Por lo tanto, se obtuvo el vector de balance α = [0.43, 2.25, 4].

Con el objetivo de evaluar el impacto del desbalance de clases en el rendimiento del modelo, se realizaron múltiples análisis variando los pesos de clase (α), tal como se muestra en la Fig. 8. Se observa que asignar pesos proporcionales a la cantidad real de muestras por clase mejora el desempeño en métricas sensibles al desbalance, especialmente el CU y el G-mean, lo que indica una mejor capacidad del modelo para detectar los casos inestables sin sacrificar el rendimiento general.
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Figura 8: Métricas de Desempeño Considerando Diferentes Vectores de Pesos de Balance



Resultados del entrenamiento

Durante el proceso de entrenamiento, se registraron las curvas de pérdida y precisión tanto en el conjunto de entrenamiento como en el de validación  (reservando un 20 % de los datos de entrenamiento para este último). La Fig. 9 muestra la evolución de la función de pérdida, donde se observa una disminución progresiva y estable hasta alcanzar valores bajos, lo que indica una buena convergencia del modelo sin evidencia de sobreajuste. Por su parte, la Fig. 10 presenta la evolución de la precisión, evidenciando un incremento sostenido hasta estabilizarse cerca del 97% para ambos conjuntos.
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Figura 9: Evolución de la Pérdida Durante el Entrenamiento
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Figura 10: Evolución de la Precisión Durante el Entrenamiento



Resultados del Desempeño

El desempeño del modelo RCNN-EE se evaluó mediante matrices de confusión para los conjuntos de entrenamiento y prueba, como se muestra en la Tabla 2. Los valores en la diagonal principal indican clasificaciones correctas (verdaderos positivos) para cada clase. Los valores fuera de la diagonal corresponden a errores de clasificación (falsos positivos o falsos negativos), que permiten calcular las métricas de desempeño de la Tabla 3.

 

Tabla 2: Matrices de Confusión tanto para los Datos de Entrenamiento como para los de Prueba
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En cuanto a las métricas de desempeño, se resumen en la Tabla 3. Estas métricas reflejan un rendimiento adecuado del modelo de aprendizaje, manteniendo altos niveles de precisión y confiabilidad tanto en el conjunto de entrenamiento como en el de prueba. En particular, la métrica G-mean demuestra un buen desempeño global, especialmente en contextos con clases desbalanceadas.

 

Tabla 3: Métricas de Desempeño
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Comparación con Otros Modelos Deep Learning

Con el objetivo de confirmar un mejor desempeño de la RCNN-EE entrenada, en la Fig. 11 se presenta una comparación del comportamiento de la pérdida para los modelos LSTM, CNN y RCNN-EE. Se evidencia que el modelo propuesto (RCNN-EE) presenta una menor pérdida durante todo el entrenamiento, lo que se ve reflejado también en las métricas globales de rendimiento dispuestas en la Tabla 4.

Estos resultados permiten concluir que la arquitectura híbrida RCNN-EE supera a los modelos tradicionales CNN y LSTM, tanto en precisión como en métricas complementarias evaluadas sobre el conjunto de datos de prueba. Esto valida su capacidad de generalización para la tarea de clasificación del estado de estabilidad del sistema eléctrico ante escenarios no vistos durante el entrenamiento.
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Figura 11: Comparación con Otras Máquinas de Aprendizaje

 

Tabla 4: Comparación con Otros Modelos Deep Learning
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Aplicación de la RCNN en Tiempo Real

La aplicación en tiempo real del modelo RCNN-EE requiere que la información proveniente de las PMU sea procesada de modo que el modelo entrenado pueda interpretar correctamente las señales y clasificar el estado del sistema. En este contexto, el modelo RCNN-EE debe predecir el estado de inestabilidad con la anticipación suficiente para decidir y ejercer una acción de control correctivo o de emergencia que evite la pérdida de estabilidad. En este sentido, se evaluaron y calcularon los tiempos asociados a la metodología para la predicción del estado de estabilidad. La ventana de datos analizada, de 140 ms, abarca la falla y la condición post falla. Los retardos de adquisición y transmisión de datos son de 100 ms. El tiempo requerido para el preprocesamiento de datos fue de 1,3 ms, mientras que el proceso de clasificación tomó aproximadamente 48,2 ms. Es importante destacar que estos tiempos de cálculo dependen en gran medida de las capacidades del equipo en el cual se ejecutó el modelo; por lo tanto, utilizando una máquina más moderna y con mayor capacidad de procesamiento, es posible reducirlos significativamente, tal como se ha demostrado en la referencia [9]. El tiempo total acumulado para la predicción, considerando los tiempos expuestos en la Fig. 12, se establece en 289,5 ms desde el inicio de la falla hasta la finalización de la predicción. Este valor es significativamente inferior al intervalo en que típicamente se desarrollan las inestabilidades de corto plazo, lo que permite que, una vez identificada la condición de inestabilidad, se tome oportunamente una decisión de control de emergencia. Entre estas acciones se destacan, por ejemplo, la desconexión selectiva de generadores ante fenómenos de inestabilidad transitoria o la desconexión de cargas dinámicas críticas frente a escenarios de colapso de tensión, mitigando así la pérdida de estabilidad del sistema.

 

[image: Image]

Figura 12: Línea de Tiempo para la Aplicación en Tiempo Real del Modelo de Aprendizaje



CONCLUSIONES Y RECOMENDACIONES

La integración de generación renovable impacta significativamente la dinámica del sistema eléctrico, aumentando la complejidad en la evaluación de la estabilidad de corto plazo y exigiendo metodologías predictivas que consideren en estos escenarios tanto la estabilidad transitoria como la de tensión de manera conjunta.

El modelo híbrido RCNN-EE entrenado demuestra un alto desempeño predictivo (ACC: 96.07 %, G-mean: 97.57 %), superando a arquitecturas convencionales de aprendizaje profundo como CNN y LSTM, y mostrando una capacidad robusta para discriminar entre estados estables e inestables ante perturbaciones severas.

El modelo híbrido implementado permite una evaluación en tiempo real con tiempos menores a 400 ms, lo que, valida su aplicabilidad en sistemas de protección y control del sistema eléctrico, permitiendo la toma de decisiones de emergencia durante la operación en tiempo real de los sistemas de potencia.

Se evidenció que los clasificadores entrenados exclusivamente con topologías de generación convencional pierden capacidad predictiva ante la inclusión de fuentes renovables. Dado que la dinámica del sistema se ve alterada por el desplazamiento de la generación sincrónica, el uso de modelos sin actualizar bajo estas nuevas condiciones operativas compromete la confiabilidad de la evaluación en tiempo real.


	TRABAJOS FUTUROS

Como trabajo futuro, se propone profundizar en el impacto de la incertidumbre asociada a la variabilidad estocástica de los recursos renovables. Asimismo, se plantea ampliar el alcance del estudio hacia la estabilidad impulsada por convertidores, analizando específicamente las interacciones de control de alta frecuencia y los fenómenos de interacción rápida. También se contempla la evaluación de escenarios de contingencia más complejos, como la pérdida simultánea de grandes bloques de generación renovable y sus efectos en la dinámica del sistema. Finalmente, se buscará optimizar la implementación del modelo RCNN-EE en hardware de mayor capacidad para reducir los tiempos de procesamiento, fortaleciendo así su integración en esquemas de control de emergencia en tiempo real.
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Acrónimos

ACC: Exactitud (Accuracy).

CNN: Red Neuronal Convolucional (Convolutional Neural Network).

CU: Proporción de casos inestables correctamente identificados (Correct Unstable).

DL: Aprendizaje Profundo (Deep Learning).

EECP: Estado de Estabilidad de Corto Plazo.

ET: Estabilidad Transitoria.

ETCP: Estabilidad de Tensión de Corto Plazo.

FC: Capa Totalmente Conectada (Fully Connected).

FER: Fuentes de Energía Renovable.

FV: Fotovoltaica.

G-mean: Media Geométrica.

IBR: Recursos Basados en Inversores (Inverter-Based Resources).

LSTM: Memoria a Largo y Corto Plazo (Long Short-Term Memory).

MI: Motores de Inducción.

PMU: Unidad de Medición Fasorial (Phasor Measurement Unit).

RCNN-EE: Red Neuronal Convolucional Recurrente (modelo propuesto para Evaluación de Estabilidad).

SEP: Sistema Eléctrico de Potencia.

SS: Sensibilidad para la clase estable (Stable Sensitivity).
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