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Resumen:

La integración masiva de fuentes de energías renovables, como la eólica y la fotovoltaica, ha modificado la dinámica de los Sistemas Eléctricos de Potencia (SEP), reduciendo la inercia rotacional y afectando la estabilidad transitoria. Ante este desafío, en este trabajo se aplica el Esquema Adaptativo de Desconexión de Generación (EADG) basado en aprendizaje profundo y mediciones PMU para identificar de forma adaptable y desconectar en tiempo real los generadores críticos responsables de la inestabilidad en un sistema con alta penetración de generación basada en fuentes de energía renovable.

La metodología aplicada utiliza una base de datos dinámica con distintos escenarios operativos y contingencias n-1, para entrenar una red neuronal híbrida RCNN que identifica los generadores cuya desconexión permite recuperar la estabilidad del sistema. Los resultados demuestran que el modelo permite la recuperación de estabilidad transitoria con una desconexión mínima de generación convencional y tiempos de respuesta inferiores a 0.5 s, demostrando su precisión y efectividad, mayores al 97%, y aplicabilidad en tiempo real en sistemas con alta penetración renovable.
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Abstract:

The massive integration of renewable energy sources, such as wind and photovoltaic power, has altered the dynamics of Power Systems (PS), reduced rotational inertia and affected transient stability. To address this challenge, this work applies to an Adaptive Generation Tripping Scheme (AGTS) based on deep learning and PMU measurements to adaptively identify and disconnect in real time the critical generators responsible for instability in a system with high renewable energy penetration.

The proposed methodology employs a dynamic database encompassing various operational scenarios and n-1 contingencies to train a hybrid Recurrent Convolutional Neural Network (RCNN) that identifies the generators whose disconnection allows the system to recover stability. The results demonstrate that the model enables the recovery of transient stability with minimal disconnection of conventional generation and response times below 0.5 s, achieving accuracy and effectiveness above 97%, thus confirming its potential for real-time application in systems with high renewable penetration.

Keywords: Renewable energy, Transient stability, Deep learning, Adaptive tripping scheme, PMU.
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		INTRODUCCIÓN



El objetivo global de descarbonizar la matriz energética ha impulsado la incorporación masiva de fuentes de energía renovable (FER) en los Sistemas Eléctricos de Potencia (SEP). Los avances tecnológicos y las políticas de sostenibilidad han favorecido su expansión, aunque esta transición introduce nuevos desafíos operativos al reducir la inercia y comprometer la estabilidad del sistema [1].

La disminución de inercia afecta directamente la estabilidad transitoria (ET), limitando la capacidad del sistema para reaccionar ante perturbaciones severas dentro de tiempos adecuados para una acción de control efectiva [2]. En este contexto, se requiere el desarrollo de metodologías más rápidas de evaluación y respuesta.

Los métodos tradicionales de análisis paso a paso son ineficientes para su aplicación en tiempo real por su alta demanda computacional [3], [4]. Los métodos directos, aunque más rápidos, presentan limitaciones al no considerar modelos dinámicos detallados [3]. Actualmente, las Unidades de Medición Sincrofasorial (PMU) permiten evaluar la estabilidad en tiempo real mediante minería de datos y aprendizaje profundo [3], [4].

Sin embargo, la mayoría de estas metodologías fueron desarrolladas bajo paradigmas de generación convencional, reduciendo su eficacia en sistemas con alta penetración renovable. En [5], se analizó el impacto de las FER en la estabilidad de tensión de corto plazo (ETCP) y la ET, concluyendo que la mayor presencia renovable incrementa los casos de inestabilidad transitoria debido a la pérdida de inercia.

Este trabajo toma como base los escenarios de [5], focalizándose en los casos inestables transitorios. Sobre ellos se aplica la metodología de identificación de generadores críticos propuesta en [4], adaptándola a sistemas con alta penetración renovable para implementar un Esquema Adaptativo de Desconexión de Generación (EADG).

El documento se organiza en cinco capítulos: el Capítulo 2 aborda los fundamentos teóricos y herramientas empleadas; el Capítulo 3, la metodología aplicada; el Capítulo 4, los resultados obtenidos; y el Capítulo 5, las conclusiones del estudio.


	
		MARCO TEÓRICO



Para poner en contexto la presente investigación, se presenta una serie de conceptos sobre estabilidad transitoria y herramientas necesarias para aplicar la metodología propuesta en [4] a sistemas con alta penetración de generación basada en FER.


2.1 Estabilidad Transitoria 



La ET se define como la capacidad del sistema eléctrico para mantener el sincronismo tras una perturbación severa. Esta condición depende de la habilidad de los generadores síncronos (SG) para restablecer el equilibrio entre el par mecánico  suministrado por la turbina y el par electromagnético  producido por la máquina [6].

El ángulo del rotor constituye la variable principal para analizar este fenómeno, ya que refleja directamente las oscilaciones del generador durante y después de una falla. Dicho comportamiento se describe mediante la ecuación del movimiento rotacional (ecuación 1):
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Donde  es la constante de inercia,  la velocidad angular nominal y  el ángulo del rotor respecto al eje síncrono.

Cuando este equilibrio se pierde, el ángulo del rotor aumenta progresivamente, lo que puede conducir a la pérdida de sincronismo del generador con el resto del sistema. Este fenómeno caracteriza la inestabilidad transitoria, manifestada por una divergencia del ángulo rotórico.

Como medida de emergencia, se aplican esquemas de desconexión automática de generación (DAG) o el Esquema Adaptativo de Desconexión de Generación (EADG) propuesto en [4], con el objetivo de preservar la estabilidad global del sistema y mitigar el impacto de la falla [7].


2.2 Modelos Dinámicos de Fuentes de Energía Renovable (FER)



El creciente uso de fuentes de energía renovable, especialmente eólica y fotovoltaica ha introducido nuevos desafíos para la estabilidad de los sistemas eléctricos de potencia. Con el fin de analizar su comportamiento dinámico frente a contingencias, se emplean los modelos desarrollados por el EPRI y posteriormente validados y estandarizados por el WECC, los cuales están implementados en plataformas de simulación como PowerFactory, ampliamente utilizadas en estudios de estabilidad [8].

Dado que la respuesta dinámica de estas fuentes influye directamente en la estabilidad del sistema, su modelado detallado resulta esencial. En los estudios de flujo de carga, las plantas renovables se representan como generadores conectados mediante transformadores capaces de inyectar potencia activa y reactiva de forma controlada, lo que permite mantener la tensión del sistema cuando operan con factor de potencia constante [9].

[image: Diagrama

El contenido generado por IA puede ser incorrecto.]

Figura 1: Representación Esquemática de un Generador Eólico Tipo 4 Conectado a Red. Fuente: [10]

 

En los análisis dinámicos, los generadores renovables tipo 4, mostrados en la Figura 1, se modelan como sistemas totalmente desacoplados de la red mediante convertidores electrónicos de potencia. Según [10], estos modelos de Recursos Basados en Inversores (IBR) se fundamentan primordialmente en un control de corriente de lazo interno rápido (fast inner-loop current control).

Es importante precisar que, si bien la literatura distingue entre tecnologías seguidoras de red (Grid-Following - GFL) y formadoras de red (Grid-Forming - GFM), el nombre de un modelo genérico por sí solo no determina su categoría. El presente estudio se centra en el desempeño de inversores bajo una configuración que, si bien es compatible con servicios auxiliares de frecuencia y tensión, opera primordialmente bajo la premisa de seguimiento de red (Grid-Following - GFL).

No obstante, se reconoce que la arquitectura de estos modelos genéricos permite, mediante ajustes específicos, representar comportamientos de formación de red (Grid-Forming - GFM), asegurando la estabilidad global del sistema ante perturbaciones.


2.3 Esquemas de Protección Especial



Los Esquemas de Protección Especial (SPE) constituyen una estrategia avanzada dentro de los sistemas eléctricos de potencia, diseñada para preservar la estabilidad del sistema ante condiciones anormales. Estos esquemas ejecutan acciones de control predefinidas tras la ocurrencia de una contingencia, basándose en simulaciones fuera de línea que consideran la seguridad estática y dinámica del sistema [3].

A diferencia de las protecciones convencionales, que actúan de forma local e independiente, los SPE operan de manera coordinada a nivel sistémico, integrando múltiples señales y dispositivos con el fin de evitar colapsos de tensión, frecuencia o pérdida de sincronismo. Su implementación permite mantener la integridad operativa frente a perturbaciones severas.

Según el tipo de variable que desencadena su actuación, los SPE pueden clasificarse en dos grupos:


	
		Basados en eventos, que se activan ante la detección de una contingencia específica o una combinación de fallas predefinidas.

		Basados en respuesta, que actúan al detectar cambios en variables eléctricas medibles, como la tensión o la frecuencia, una vez que el sistema ha comenzado a desviarse de su condición estable [4].



En [4], la EADG se plantea como un esquema de protección especial adaptativo capaz de identificar generadores críticos responsables de la pérdida de estabilidad transitoria. A diferencia de los SPE tradicionales, basados en escenarios predefinidos, el esquema propuesto utiliza técnicas de aprendizaje profundo (DL) mediante una red neuronal convolucional recurrente (RCNN) entrenada con una amplia base de datos que abarca numerosas y muy diversas condiciones operativas y contingencias. De esta manera, el EADG aprende directamente de la dinámica del sistema a partir de mediciones PMU, permitiendo una decisión basada en respuesta más rápida, precisa y generalizable ante disturbios severos [4].


2.4 Deep Learning



La Inteligencia Artificial (IA) abarca técnicas orientadas a la extracción de conocimiento a partir de datos, donde el Aprendizaje Automático (ML) constituye su base y el DL una extensión que utiliza múltiples capas no lineales para extraer y transformar características automáticamente [11], [12].

El DL ha mostrado alto rendimiento en aplicaciones eléctricas como el pronóstico eólico, la predicción de carga crítica y la mitigación de inestabilidades de tensión [13], [14]. Si bien existen distintos modelos de DL, la implementación de estructuras híbridas mejora el desempeño al combinar las fortalezas de diferentes arquitecturas [14]. En este trabajo se utiliza el modelo híbrido CNN-LSTM propuesto en [4] y [14], que integra la detección de patrones espaciales de las CNN con la capacidad de las LSTM para capturar dependencias temporales.

La integración de ambas arquitecturas conforma la Red Neuronal Convolucional Recurrente (RCNN), capaz de extraer simultáneamente las características espaciales y temporales de las señales del sistema eléctrico, mejorando así la precisión y robustez del proceso de clasificación.
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Figura 2: Modelo de Arquitectura de Red Hibrida [4]

 

En la Figura 2 se presenta la arquitectura del modelo RCNN donde recibe como entrada series de tiempo medidas por unidades PMU, que representan variables del sistema eléctrico durante la falla y en los instantes posteriores a su despeje. Estas series son transformadas en tensores de datos, los cuales se procesan de forma secuencial a través de capas convolucionales, LSTM y capas de conexión completa (FC), para finalmente realizar la clasificación de generadores críticos.


	
		 METODOLOGÍA DE DESCONEXIÓN AUTOMÁTICA DE GENERADORES



La metodología de identificación de generadores críticos adoptada en este trabajo se basa en la propuesta de [4], estructurada en cuatro etapas principales: construcción de la base de datos, selección de variables representativas, etiquetado de generadores críticos y entrenamiento del modelo híbrido RCNN.

En este estudio, se amplía la metodología al incorporar FER en el sistema de prueba, generando una nueva base de datos dinámica que incluye escenarios operativos con generación eólica y fotovoltaica.


3.1 Bases de Datos



La generación de una base de datos adecuada constituye un paso fundamental en metodologías basadas en aprendizaje profundo, ya que el desempeño del modelo depende directamente de la representatividad y diversidad de los datos empleados. En este estudio, la base de datos se desarrolla en dos etapas complementarias: estática y dinámica.

En la primera etapa se realiza el cálculo del flujo óptimo de potencia (OPF) considerando la integración de fuentes de energía renovable (FER) en diferentes escenarios operativos. Este procedimiento permite definir el despacho de generación convencional y renovable, reflejando la reducción de la inercia rotacional asociada a la sustitución de unidades síncronas por generación eólica y fotovoltaica.

En la segunda etapa se generan series de tiempo mediante simulaciones de transitorios electromecánicos, manteniendo constantes los escenarios de carga y la topología del sistema, pero modificando el despacho de generación para incluir FER. Estas simulaciones permiten caracterizar la respuesta dinámica del sistema ante distintas contingencias N-1, como cortocircuitos trifásicos y salidas de generación.

La modelación de las plantas renovables se basa en el modelo dinámico Tipo 4, que representa el comportamiento del convertidor mediante bloques funcionales (Figura 3) y control directo de tensión. El etiquetado de los escenarios de estabilidad (estable, inestable por ET o ETCP) sigue la metodología descrita en [15], basada en la observación de la pérdida de sincronismo y la respuesta del sistema tras las acciones de control.
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Figura 3: Diagrama de Bloques Funcionales del Modelo Dinámico Tipo 4. Fuente: [16]

 


3.2 Selección de Variables de Entrada al Modelo RCNN



Los datos de entrada del modelo RCNN para la identificación de generadores críticos se conforman por series de tiempo de variables eléctricas y mecánicas representativas del comportamiento dinámico del sistema. Estas variables deben ser capaces de reflejar con claridad los fenómenos asociados a la pérdida de sincronismo dentro de una ventana temporal reducida y provenir de mediciones o estimaciones obtenidas mediante PMU, lo que permite su implementación en tiempo real.

En este estudio se emplean cuatro variables: magnitud y ángulo de tensión (U, 𝜃), ángulo del rotor (δ) y velocidad angular equivalente (ω). Todas ellas se registran en barras con unidades generadoras y cargas dinámicas, lo que permite obtener información sobre la dinámica de los fenómenos que se desarrollan en el corto plazo.

De acuerdo con [14] y [4], estas variables han demostrado ser adecuadas para caracterizar tanto la estabilidad de tensión de corto plazo como la estabilidad transitoria. Así, el modelo RCNN utiliza como entradas señales directamente medibles por PMU, sin requerir información explícita sobre la topología del sistema o el tipo y localización de la contingencia. Dichos aspectos se encuentran implícitos en la base de datos dinámica generada a partir de simulaciones, la cual debe actualizarse y reentrenarse ante cambios en la red o en el parque de generación.


3.3 Identificación de Generadores Críticos



Con la finalidad de etiquetar a los generadores que son críticos, en todos los casos de la base de datos clasificados como ET utilizando [14] y [15], para usarlo como salida en el entrenamiento del modelo híbrido RCNN, es necesario primero determinar a través de un ranking de desconexión y simulaciones dinámicas las plantas que al ser desconectadas son responsables de la pérdida de estabilidad del sistema. Para ello se aplica la propuesta de [4]:


3.3.1 Ranking de desconexión



El proceso inicial para formar el etiquetado de generadores críticos consiste en elaborar una clasificación de desconexión evaluando en el tiempo a los generadores que alcanzan el límite teórico de estabilidad ±180° [17].

El tiempo en el que alcanza dicho valor permite establecer el orden de pérdida de sincronismo, generando así un ranking temporal de las unidades más susceptibles a la inestabilidad.

Para ejemplificar el procedimiento de construcción del ranking de desconexión se muestra en la Figura 4 la evolución del ángulo del rotor de los generadores sincrónicos en un escenario con problemas por ET por falla trifásica en una línea de transmisión en el sistema IEEE New England de 39 barras.

En la Figura 4 se observa que el primer generador en perder sincronismo es el G07, en celeste, aproximadamente a los 850 ms, luego cien milisegundos más tarde, lo hace G06, en verde, y así sucesivamente. A partir de estos resultados se construye el ranking de desconexión de la Tabla 3.1.

 

[image: Image]

Figura 4: Evolución en el Tiempo del Ángulo de Rotor del Generador Sincrónico (caso 770)

Tabla 3.1: Ranking de Desconexión (Caso 770)

[image: Image]

 


3.3.2 Etiquetado de generadores críticos



Una vez establecido el ranking de desconexión (Tabla 3.1), este conjunto de generadores se emplea en una segunda etapa, donde se ejecutan nuevas simulaciones dinámicas aplicando la desconexión acumulativa en el mismo orden en que las máquinas perdieron sincronismo.

Después de cada desconexión, se evalúa si la acción de control restaura la estabilidad del sistema. Caso contrario, se continúa con la desconexión progresiva según el ranking hasta alcanzar un estado estable.

Los generadores cuya desconexión permite recuperar la estabilidad se etiquetan como críticos.

Para ilustrar esto, la Figura 5 muestra la evolución del ángulo del rotor de los generadores tras aplicar la desconexión del generador G07, primero en el ranking. Se observa que, una vez ejecutada la acción de control, el sistema recupera la estabilidad y los ángulos del rotor tienden a estabilizarse. Por tanto, G07 se clasifica como el único generador crítico, ya que, para este estado operativo y contingencia, su desconexión logra restablecer la estabilidad y evitar la propagación de la inestabilidad en el sistema.
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Figura 5: Mitigación de la Inestabilidad Mediante la Desconexión del Generador G36 Según el Ranking

 

Aquí la metodología propuesta adquiere especial relevancia al incorporar un ranking de desconexión que permite priorizar las unidades generadoras más influyentes en la pérdida de estabilidad. Este enfoque posibilita una acción más selectiva y eficiente, evitando desconexiones innecesarias y preservando la mayor cantidad posible de generación en servicio, lo que optimiza la respuesta del sistema ante contingencias severas.


3.4 Modelo RCNN




3.4.1 Preprocesamiento de datos



Antes del entrenamiento, los datos se transforman a un formato compatible con las capas iniciales del modelo, en especial las convolucionales, representándose como un tensor tridimensional cuyos ejes corresponden al número de barras (B), muestras temporales (T) y variables eléctricas seleccionadas. En las barras donde no existen generadores o motores, los valores correspondientes al ángulo del rotor y a la velocidad angular se completan con un valor de 1 pu, a fin de mantener la dimensionalidad y consistencia de las series temporales utilizadas en el entrenamiento del modelo.

El eje T define las muestras dentro de una ventana temporal de 140 ms, suficiente para captar la dinámica inmediatamente posterior a la contingencia. El eje B representa las barras con generación y cargas dinámicas, mientras que el tercer eje agrupa las cuatro variables: magnitud y ángulo de tensión (U, θ), ángulo del rotor (δ) y velocidad (ω), de modo que el tensor de entrada se define como (U, θ, δ, ω) ∈ ℝ^(T×B×4).

En los casos estables o inestables ETCP todos los generadores se etiquetan con valor cero, dado que en estos casos no se presentan generadores críticos. Finalmente, se aplica una normalización z-score, ajustando las variables a media cero y varianza unitaria para unificar sus escalas [14].


3.5 Métricas de desempeño



Dado que el modelo de aprendizaje predice conjuntos de generadores críticos, la métrica de evaluación del rendimiento se fundamenta en la similitud entre conjuntos.

Para ello, se emplea el Índice de Jaccard, que cuantifica el grado de similitud entre dos conjuntos de elementos [4], según la ecuación (2).
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Donde 𝐽 ∈ [0,1] y 𝐽 (S𝑖, S𝑗) = 1. 

Para este caso la clasificación es considerada correcta cuando 𝐽 ( ,) = 1, siendo  el conjunto predicho por la maquina y  el conjunto de valores verdaderos.

En este trabajo se utilizan las tres métricas basadas en el índice Jaccard definidas en [4] y [14]:

El Índice de Precisión Jaccard (JACC) evalúa el rendimiento global del modelo, considerando tanto los casos estables como los inestables. En los casos estables o inestables ETCP, se espera que el modelo no identifique generadores críticos. El Índice Jaccard para casos inestables (JACCU) mide el desempeño tomando en cuenta solo los escenarios inestables transitorios.

Por su parte, el Índice de Efectividad Jaccard (JACCUE) determina la capacidad del modelo para predecir conjuntos de generadores suficientes que eviten la inestabilidad transitoria. A diferencia de otros indicadores, no penaliza las predicciones con generadores adicionales, siempre que el conjunto estimado incluya a todos los clasificados como críticos. Así, JACCUE refleja la efectividad del modelo en mitigar la pérdida de sincronismo, priorizando la restauración de la estabilidad del sistema sobre la coincidencia exacta con las etiquetas. Si el modelo predice menos generadores o un conjunto incompleto, no es suficiente para mitigar la inestabilidad.


	
		ANALISIS DE RESULTADOS 



El análisis se realiza sobre el sistema IEEE New England de 39 barras, Figura 6, mediante la incorporación de 600 MW de generación eólica y 600 MW de generación fotovoltaica, ubicadas en las barras 34, 32 y 33, seleccionadas por su mayor potencial renovable [5]. Cada parque fotovoltaico se modela con dos centrales de 100 MW, mientras que cada parque eólico está conformado por 100 aerogeneradores de 2 MW, configuraciones que reflejan las características típicas de los parques modernos [5].
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Figura 6: Sistema New England 39 Barras con Penetración de Energías Renovables [5]

 


4.1 Bases de Datos 



La base de datos empleada en este estudio se desarrolla a partir de la metodología aplicada en [5], donde se detalla el procedimiento completo de generación y etiquetado de escenarios.

El conjunto final está conformado por 9883 escenarios convergentes, obtenidos del cálculo del flujo óptimo de potencia (OPF) en PYPOWER, agrupados en tres bandas horarias: valle, resto y pico. Cada banda incluye la integración de 600 MW de generación eólica y 600 MW fotovoltaica, representando condiciones operativas con alta penetración de fuentes renovables. Los resultados del cálculo OPF se resumen en la Tabla 4.1.

 

Tabla 4.1: Resultado de Cálculo de Flujo de Carga Óptimo

[image: Image]

 

A partir de los escenarios obtenidos en el flujo óptimo de potencia, se ejecutaron simulaciones dinámicas RMS en DIgSILENT PowerFactory, generando un conjunto etiquetado según el estado de estabilidad del sistema, tal como se muestra en la Tabla 4.2.

Las perturbaciones aplicadas corresponden a cortocircuitos trifásicos despejados a los 80 ms y desconexiones de generación aplicadas a los 200 ms del inicio de la simulación.

 

Tabla 4.2: Clasificación de Estado de Estabilidad por Banda Horaria

[image: Image]

 


4.2 Evaluación de Generadores Críticos 



En los 1529 casos identificados como inestables transitorios, el primer paso en la clasificación de generadores críticos consiste en formar el conjunto o ranking de máquinas que pierden sincronismo, ordenadas según el instante temporal en que ocurre dicha pérdida. Posteriormente, se evalúa la estabilidad del sistema aplicando la desconexión progresiva de los generadores en el orden establecido. Este procedimiento permite determinar cuáles unidades, al ser desconectadas, restablecen la estabilidad del sistema, por tanto, clasificándolas como críticas.
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Figura 7: Número de Generadores que Pierden Sincronismo Frente a Generadores Etiquetados como Críticos

 

La Figura 7 muestra sobre el conjunto de casos inestables transitorios, la comparación entre la cantidad de generadores que pierden sincronismo y aquellos que son realmente críticos y provocan la inestabilidad del sistema. Se observa que, para el caso de cinco generadores, existen 618 casos aproximadamente, el 40 % del total en los que las máquinas pierden sincronismo. Sin embargo, en solo 306 casos, cerca del 20 %, son cinco los generadores efectivamente críticos. Otra situación se presenta en los casos con nueve generadores en el ranking, 2 % de los escenarios, donde en ningún caso fue necesario desconectar los nueve. De esto se concluye que, aunque en condiciones críticas puedan llegar a perder sincronismo hasta el 90 % de las unidades, no es indispensable desconectar todas para recuperar la estabilidad.

La metodología propuesta demuestra que es posible restablecer el sistema mediante la desconexión de un número reducido de generadores, optimizando así la respuesta de control ante eventos severos.


4.3 Diseño del modelo RCNN



El modelo híbrido RCNN tiene como objetivo identificar los generadores críticos responsables de la pérdida de sincronismo ante inestabilidad transitoria. Como entradas, utiliza tensores tridimensionales formados por series de tiempo de las variables eléctricas del sistema como se explica en el punto 3.4.1. La salida del modelo consiste en un vector binario donde los generadores críticos se etiquetan con valor 1 en los casos etiquetados como ET, mientras que en los casos estables o con problemas de ETCP se asigna el valor 0.

Basado en estudios previos sobre estabilidad transitoria con DL [4], y considerando la naturaleza del problema, se adopta la arquitectura híbrida mostrada en la Figura 8.

 

[image: Gráfico

El contenido generado por IA puede ser incorrecto.]

Figura 8: Modelo de Arquitectura de Red Híbrida

 

El modelo híbrido RCNN combina una red convolucional (CNN) y una LSTM, integrando el análisis espacial y temporal de las señales eléctricas. La CNN está conformada por tres capas convolucionales con 64, 32 y 4 filtros, kernel de 3×3 y función de activación ReLU, seguidas de operaciones de max pooling (2×2), Batch Normalization y un Dropout de 0.1 para reducir el sobreajuste. Las salidas se aplanan (flattening) y se conectan a una capa densa de 32 neuronas.

Posteriormente, la LSTM, con 128 unidades y función de activación tanh, captura las dependencias temporales de las señales aplicando normalización por capas para estabilizar el entrenamiento.

Finalmente, las características extraídas se procesan en una capa densa de 64 neuronas con regularización L2, seguida de una capa de salida con 9 neuronas con función activación sigmoide, que actúa como clasificador y estima la probabilidad de que cada generador sea crítico.

Antes del entrenamiento, se definieron los hiperparámetros que controlan el proceso de aprendizaje del modelo, los cuales fueron ajustados siguiendo el esquema propuesto en [4]. La Tabla 4.3 resume los principales hiperparámetros de entrenamiento utilizados.

 

Tabla 4.3: Hiperparámetros del Modelo [4]
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El objetivo de ajustar hiperparámetros es mejorar la estabilidad del entrenamiento y la capacidad de generalización del modelo, evitando el sobreajuste.


4.4 Entrenamiento del Modelo



Durante el entrenamiento, el modelo ajusta de forma iterativa los pesos y sesgos internos para minimizar la diferencia entre las predicciones y los valores reales.

El modelo se entrena utilizando una ventana temporal de 140 ms para las series de tiempo (U, θ, δ y ω), diseñada para capturar la respuesta dinámica del sistema durante la perturbación o contingencia y después de su despeje en caso de fallas. Los datos presentan una frecuencia de muestreo de 100 Hz, característica de las PMU.

Los datos se dividen aleatoriamente en un 85 % (8400 casos) para el conjunto de entrenamiento —que incluye validación interna durante el proceso de ajuste— y un 15 % (1483 casos) para prueba, preservando la proporción de los distintos estados de estabilidad del sistema.

El desempeño del modelo se evalúa mediante su función de pérdida, que cuantifica la discrepancia entre las predicciones y los valores reales. Este análisis permite diagnosticar problemas de sobreajuste (overfitting) o subajuste (underfitting), además de verificar la representatividad de los conjuntos de entrenamiento y validación durante el proceso de aprendizaje.

Con el fin de evaluar el comportamiento del modelo y verificar que no se presenta sobreajuste se muestra en la Figura 9 el resultado del entrenamiento. En esta figura se observa que, con un entrenamiento de 300 épocas, las curvas de pérdida de entrenamiento y validación convergen de forma estable, lo que indica que el modelo alcanza un equilibrio adecuado entre aprendizaje y generalización.
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Figura 9: Respuesta de Función de Pérdida con 300 Épocas

 

Adicionalmente, se realizó el entrenamiento independiente de los módulos que integran la arquitectura híbrida con el fin de evaluar el desempeño individual de cada algoritmo. El primer componente consiste en una red neuronal convolucional (CNN) estructurada con tres capas ocultas de 64, 32 y 4 filtros, respectivamente, empleando un tamaño de núcleo uniforme de 3×3. El segundo componente corresponde a una red de memoria a largo plazo (LSTM) configurada con una unidad de memoria de 128 neuronas. Como se observa en la Figura 10, la curva de aprendizaje demuestra que el modelo híbrido RCNN alcanza una convergencia superior, obteniendo la menor función de pérdida en comparación con las arquitecturas evaluadas por separado.
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Figura 10: Respuesta de Función de Perdida de Modelos CNN, LSTM y RCNN

 


4.5 Resultados de Desempeño



Posterior al proceso de entrenamiento, el modelo se evalúa mediante las métricas de desempeño tanto en el conjunto de entrenamiento como en el conjunto de prueba, con el objetivo de verificar su capacidad para obtener buenos resultados ante casos no conocidos, Tabla 4.4.

 

Tabla 4.4: Métricas de Desempeño para Modelo Entrenado con 300 Épocas
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La Tabla 4.4 muestra que el modelo RCNN alcanza un desempeño consistente entre los conjuntos de entrenamiento y prueba, evidenciando una correcta capacidad de generalización.

Para evaluar la efectividad del modelo híbrido de aprendizaje profundo, en la Tabla 4.5 se compara el resultado de desempeño frente a sus modelos independientes CNN y LSTM. Como se puede observar el modelo que mejores resultados tiene es el modelo Hibrido con un rendimiento por encima del 97%.

Tabla 4.5: Métricas de Desempeño entre Modelos de Aprendizaje CNN, LSTM y RCNN
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Las métricas JACC, JACCU y JACCUE reflejan una alta precisión y efectividad en la identificación de generadores críticos, sin indicios de sobreajuste.

Estos resultados demuestran que el modelo logra mantener un equilibrio entre aprendizaje y validación, asegurando una respuesta confiable ante nuevos escenarios operativos y contingencias no vistas durante el entrenamiento.


4.6 Aplicación en Tiempo Real del Modelo RCNN



La implementación del EADG requiere la ejecución en tiempo real del modelo RCNN, el cual identifica los generadores críticos responsables de la pérdida de estabilidad transitoria. A partir de esta salida se define el conjunto de unidades a desconectar, configurando así el EADG de forma adaptativa según la contingencia y las condiciones operativas del sistema.

El tiempo total de evaluación depende de la duración de la ventana temporal utilizada para la clasificación de generadores críticos y de la capacidad de cómputo del sistema donde se ejecuta.

Considerando el tiempo de procesamiento del modelo y los retrasos propios de la operación en línea, la Figura 11 muestra la secuencia temporal completa necesaria para aplicar el esquema.
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Figura 11: Línea de Tiempo del Esquema EADG en Operación en Tiempo Real

 

En la Figura 11 se muestran las etapas que conforman la secuencia temporal del esquema EADG en operación. La ventana de datos (2) que registra las variables durante la falla (1) y en posfalla ocupa 140 ms, seguida por la adquisición y transmisión de información mediante PMU (3), que requiere 100 ms [4]. El preprocesamiento de datos (4), necesario para normalizar y estructurar las series temporales, demanda aproximadamente 3,9 ms, mientras que la clasificación de generadores críticos con el modelo RCNN (5) se realiza en 50 ms. Posteriormente, la transferencia de la señal de control (6) presenta una latencia de 10 ms, y la acción final de los interruptores (7) se ejecuta en 40 ms [4], completando un tiempo total aproximado de 424 ms desde la ocurrencia de la falla.

En la Figura 12 se muestra un ejemplo representativo del comportamiento del EADG en condiciones de operación en tiempo real, donde se evalúa la respuesta del sistema ante una falla severa. La figura muestra la evolución del ángulo del rotor de un generador crítico comparando los casos con y sin la acción del esquema. Cuando el EADG se activa a los 0.5 segundos, la máquina mantiene el sincronismo (curva naranja), mientras que, sin su aplicación, se observa una pérdida de estabilidad (curva azul). Este comportamiento confirma la efectividad del esquema, cuya acción oportuna evita que el ángulo del rotor exceda el límite de ±180°, preservando la estabilidad transitoria del sistema.
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Figura 12: Respuesta Dinámica del Sistema con y sin Acción del EADG

 

Se observa que, ante la contingencia a los 120 ms del inicio de la simulación, la ventana de medición de 140 ms, la cual resulta suficiente para capturar la respuesta dinámica del sistema para lograr la clasificación temprana del generador crítico.

Esta duración de 140 ms se determinó en función del tiempo necesario para que las variables eléctricas (ángulo de rotor, tensión y velocidad) presenten sus primeras variaciones significativas tras la falla y que a la vez permita la correcta predicción temprana de los generadores críticos con altos valores de precisión y efectividad (superiores al 97 %), logrando un desempeño adecuado del EADG en tiempo real, como se evidencia en la Figura 12.

Tal como se describe en la sección 3.2, cualquier modificación en los parámetros de generación de la base de datos —incluyendo cambios en la topología de la red, el tipo de contingencia o la localización de la falla— requiere un reentrenamiento del modelo de aprendizaje para garantizar la fiabilidad del desempeño. En este contexto, se evaluó la sensibilidad del modelo RCNN ante variaciones en el tiempo de despeje de falla (TDF), incrementándolo de 80 ms a 90 ms en diez casos seleccionados aleatoriamente con etiqueta de inestabilidad transitoria (ET). Los resultados evidenciaron una reducción significativa en la capacidad de generalización del modelo, traduciéndose en una predicción deficiente de los generadores críticos, únicamente prediciendo bien 4 de los 10 casos probados. Estos hallazgos confirman que la ventana temporal de despeje es una variable crítica que debe ser integrada en el proceso de entrenamiento para asegurar la robustez del sistema ante escenarios operativos más exigentes.


	
		CONCLUSIONES Y RECOMENDACIONES



La metodología de definición del EADG basada en la predicción de generadores críticos con aprendizaje profundo constituye una alternativa efectiva frente a los esquemas tradicionales de desconexión de generación aún en sistemas con alta penetración de generación de FER. El EADG aplicado considera una amplia gama de escenarios operativos y contingencias que incluyen la inserción de FER, determinando acciones específicas de desconexión en función de la respuesta dinámica del sistema.

El esquema demuestra que no es necesario desconectar todas las unidades que pierden sincronismo, sino únicamente aquellas identificadas como críticas por la RCNN, lo que permite preservar la estabilidad del sistema con una mínima reducción de generación.

El modelo híbrido RCNN aprovecha la información temporal y espacial contenida en las señales del sistema, logrando una clasificación precisa de los generadores críticos sin requerir información sobre la topología de la red ni el tipo de contingencia aplicada. Sus métricas de desempeño superiores al 97 % confirman su capacidad de generalización y la eficacia del enfoque propuesto.

El análisis temporal demuestra que el esquema es capaz de operar en tiempo real, con tiempos de respuesta inferiores a 0.5 s, incluyendo adquisición, preprocesamiento, clasificación y acción de control. Este margen es suficiente para evitar la pérdida de sincronismo en los casos más críticos.

Como líneas de trabajo futuro, se propone evaluar la robustez del modelo frente a mediciones con ruido y a la incertidumbre de la generación basada en FER, con el fin de identificar la configuración que ofrezca el mejor balance entre precisión, velocidad y capacidad de generalización.
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JACC [%] 99,16% 99,47%
JACCU [%] 95,16% 97,20%
JACCUE [%] 98,10% 98,72%
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Hiperparimetros de entrenamiento

Funciones / pardmetros elegidos

Funcién de pérdida

Weighted Cross-Entropy (WCE), /= 0.001

‘Algoritmo de optimizacién

‘Adam, learning rate = 00001

Técnica de inicializacion Glorot Uniform
Batch size 64
Epocas 1000
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