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Resumen:

La predicción precisa de la demanda eléctrica es esencial para la operación técnico-económica del sistema eléctrico ecuatoriano. Este trabajo presenta una comparación entre los modelos Long Short-Term Memory (LSTM) y XGBoost para la predicción de la demanda de corto plazo, incorporando variables exógenas como la temperatura aparente y los feriados nacionales. Se utilizaron registros horarios del CENACE desde 2021 y datos meteorológicos satelitales del portal Open-Meteo. La estrategia empleada fue de predicción unipaso recursiva para un horizonte de 24 horas. Los resultados muestran que el modelo LSTM alcanza una mayor precisión, superando significativamente a XGBoost. Se concluye que la inclusión de variables exógenas mejora la exactitud del pronóstico y que la arquitectura LSTM constituye una herramienta robusta para la planificación operativa y energética del sistema ecuatoriano.

Palabras Clave: LSTM, XGBoost, predicción de demanda, temperatura aparente, CENACE, Ecuador.

 

Abstract:

Accurate short-term electricity demand forecasting is essential for the technical and economic operation of the Ecuadorian power system. This paper presents a comparison between Long Short-Term Memory (LSTM) neural networks and the XGBoost algorithm for short-term load forecasting, incorporating exogenous variables such as apparent temperature and national holidays. Hourly demand data were obtained from the CENACE database starting in 2021, and meteorological data were sourced from the Open-Meteo satellite platform. A recursive single-step forecasting strategy was implemented for a 24-hour prediction horizon. Results show that the LSTM model achieved the highest accuracy, significantly outperforming XGBoost. The study concludes that incorporating exogenous variables improves forecasting performance and that LSTM provides a reliable approach for short-term load prediction to support national power system planning.
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INTRODUCCIÓN

Una predicción adecuada de la demanda energética es fundamental para la operación técnico-económica de los sistemas eléctricos modernos. Predicciones confiables permiten lograr un despacho óptimo de los recursos de generación, manejo eficiente de la red y una adecuada planificación. Los cambios en los patrones de consumo debidos a el crecimiento urbano, desarrollo industrial y económico y a la creciente adopción de generación no convencional (solar, eólica etc…) han introducido nuevos desafíos al incrementar la variabilidad e incertidumbre en la operación de la red.

La predicción de series temporales puede abordarse desde distintos paradigmas, entre los cuales destacan los modelos secuenciales, como las redes Long Short-Term Memory (LSTM), y los modelos tabulares basados en árboles, como Extreme Gradient Boosting (XGBoost). Ambos enfoques difieren en la forma en que representan y aprenden la información temporal. Mientras las LSTM modelan explícitamente dependencias temporales mediante el procesamiento secuencial de los datos, XGBoost requiere transformar el problema en uno tabular mediante retardos y variables exógenas.

Desde una perspectiva práctica, XGBoost presenta ventajas en términos de eficiencia computacional e interpretabilidad, mientras que las LSTM ofrecen mayor flexibilidad para capturar dinámicas temporales complejas, a costa de una mayor complejidad de entrenamiento. Esta diferencia motiva una comparación sistemática entre ambos enfoques en aplicaciones de pronóstico operativo.

En este trabajo se comparan modelos LSTM y XGBoost en la predicción de demanda eléctrica de corto plazo a nivel de sistema país. La evaluación se realiza mediante un estudio de ablación, considerando como escenario base la demanda histórica con un retardo de 24 horas y analizando de forma incremental la inclusión de temperatura aparente de la ciudad de Guayaquil, codificaciones temporales, días feriados y un mayor número de retardos. El desempeño se evalúa utilizando MAE, RMSE y tiempo de entrenamiento, permitiendo analizar compromisos entre precisión y eficiencia computacional.

Los datos de demanda corresponden a registros del Operador Nacional de Electricidad del Ecuador (CENACE) desde 2021, mientras que los datos meteorológicos provienen del servicio Open-Meteo. La hipótesis central establece que la inclusión de variables exógenas, particularmente la temperatura aparente de la región de Guayaquil (lugar considerado como de alta relevancia de demanda tanto industrial, comercial y residencial), mejora la precisión y robustez de los modelos de predicción de demanda eléctrica de corto plazo.



DATOS Y FEATURE ENGINEERING

En esta sección describe el conjunto de datos empleado y el proceso de feature engineering aplicado con el objetivo de capturar de manera adecuada la dinámica temporal y los factores exógenos que influyen en la demanda eléctrica. Las distintas fuentes de datos y justificaciones se describen a continuación


	Fuentes de Datos

	Demanda Eléctrica

La demanda histórica proveniente de los registros históricos del CENACE, esta es calculada mediante la agregación de la generación total más las importaciones de energía.


	Variables meteorológicas

Los datos meteorológicos se han tomado desde Open - Meteo, plataforma que provee tanto de mediciones satelitales históricas como de predicciones. En este caso solamente la temperatura aparente de la ciudad de Guayaquil


	Feriados

Los días feriados son usados para tomar en cuenta las variaciones del comportamiento del consumo de energía durante estos días. La fuente de estos datos es el calendario de feriados publicado por el Gobierno Nacional del Ecuador [1]


	Preprocesamiento

La base de datos histórica de demanda del CENACE no requirió un preprocesamiento adicional debido a que internamente se maneja este procedimiento donde se tratan los valores faltantes y atípicos basándose en bitácoras de operación y planificación.

Con respecto a los datos provenientes de Open Meto tampoco se realiza un preprocesamiento adicional al que realiza la plataforma de manera interna para proveer los datos.


	Escalamiento

Todas las variables continuas se normalizan usando el escalador MinMaxScaler, transformándolas en un rango entre 0 a 1, asegurando así que la diferencia entre las magnitudes de los datos como la demanda y temperatura (2000 MW a 4500 MW y 20° a 40 °) no sean tan significativas y que contribuyan de manera proporcional durante el entrenamiento de los modelos. Esta transformación mejora el rendimiento y estabilidad de la convergencia especialmente en arquitecturas de redes neurales como lo es la LSTM [2].


	Feature Engineering

Con la finalidad de mejorar la capacidad predictiva de los modelos, se aplicaron diversas técnicas de feature engineering. El conjunto de datos resultante integra información de demanda histórica, variables meteorológicas, días feriados y codificaciones temporales, con el objetivo de preservar la naturaleza cíclica de la demanda eléctrica..


	Valores previos (Lag Features)

Los valores previos o rezagos (lag features) se construyen referenciando observaciones pasadas de la demanda e incorporándolas como variables adicionales de entrada. Este tipo de variables es fundamental para capturar la autocorrelación y las dependencias temporales presentes en la serie, permitiendo a los modelos aprender patrones de comportamiento, estacionalidades e inercia propias del consumo eléctrico [3], [4].

Desde un punto de vista estadístico, la relevancia de los rezagos se evalúa mediante el análisis de la función de autocorrelación (ACF) y la función de autocorrelación parcial (PACF). La Figura 1 muestra la ACF de la demanda eléctrica, donde se observa una fuerte dependencia temporal de corto plazo (ACF > 0.9 en los primeros rezagos) y una marcada estacionalidad diaria, con picos significativos en múltiplos de 24 horas. En particular, el rezago de 72 horas presenta un valor de autocorrelación de aproximadamente 0.71, evidenciando que la demanda conserva información relevante al menos durante tres ciclos diarios completos. A partir de este horizonte, la reducción del valor de la ACF es marginal.
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Figura 1: Representación de División de Datos en Entrenamiento, Validación y Prueba
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Figura 2: PACF de la Demanda

 

Por su parte, la PACF, como se muestra en la Figura 2 indica que la dependencia directa de la demanda se concentra principalmente en el primer rezago, mientras que los rezagos superiores presentan valores cercanos a cero. Esto sugiere que la persistencia observada a horizontes mayores se transmite de forma indirecta, principalmente a través de patrones periódicos diarios. Dado que las redes LSTM son capaces de modelar dependencias no lineales y de largo plazo, se seleccionó una ventana autorregresiva de 72 horas.


	Temperatura aparente

La temperatura aparente es una variable meteorológica que representa la temperatura percibida por el ser humano, combinando el efecto de la temperatura del aire con la humedad relativa [5]. Niveles altos de humedad reducen la capacidad el cuerpo de disipar calor mediante sudoración incrementado así la percepción del calor.

Esta variable provee un indicador más real del inconfort térmico y demanda de acondicionamiento (aires, HVAC etc …) la cual está directamente relacionado con variaciones en el consumo energético [6].

En base a experiencia del CENACE, se ha tomado como indicador solamente la temperatura aparente de la ciudad e Guayaquil, ciudad considerada como gran centro de carga industrial comercial y residencial. En este trabajo se demuestra la influencia de usar la temperatura solamente de esta ciudad como variable exógena en la predicción.


	Días feriados

Este segundo indicador son los días feriados, que se presenta como un indicado binario. Este indicador permite a los modelos de predicción diferenciar entre un día de trabajo normal y feriados [4].


	Codificación ciclica temporal

Para mantener la naturaleza cíclica de la demanda, variables temporales como el mes, día del mes, día de la semana y hora del día son codificados usando transformaciones del seno y coseno [4]. Este método preserva la relación periódica entre las unidades de tiempo permitiendo una transición suave por ejemplo entre diciembre y enero (12 y 1) o las 23:00 y las 00:00.


	PROTOCOLO EXPERIMENTAL

Esta sección se presenta el protocolo experimental adoptado para el entrenamiento, validación y evaluación de los modelos propuestos.. El diseño del protocolo experimental busca aislar el impacto de cada componente del modelo y de las variables consideradas, permitiendo una evaluación rigurosa y consistente del desempeño predictivo bajo un mismo marco metodológico.


	Definición de la Tarea de Predicción

La tarea de pronóstico abordada en este estudio consiste en la predicción de la demanda eléctrica con un horizonte temporal de 24 horas y una frecuencia de muestreo horaria. Este horizonte de predicción fue seleccionado debido a que corresponde al marco temporal en el cual se realiza la planificación operativa del sistema eléctrico, incluyendo la programación del despacho de generación y la toma de decisiones asociadas a la operación diaria. La elección de una resolución horaria permite capturar de forma adecuada las variaciones intradiarias de la demanda, preservando los patrones cíclicos característicos del comportamiento del consumo eléctrico, y asegurando que las predicciones generadas sean directamente aplicables a los procesos reales de planificación y operación del sistema.


	Predicción de paso único (Unistep)

En esta estrategia de predicción, se obtiene una única predicción para un solo paso en el futuro. Es decir que usando la secuencia de entrada, se predice solamente el siguiente valor como se indica en la Figura 6 [7].

 

Fuente: Tomado de [7]
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Figura 3: Predicción de Paso Simple.



Predicción de múltiples pasos (Multistep)

En este procedimiento, la primera predicción generada por el modelo se incorpora como parte de la secuencia de entrada para estimar el valor del siguiente paso temporal, y así sucesivamente, hasta alcanzar el horizonte deseado. [7].

 

Fuente: Tomado de [7]
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Figura 4: Predicción Modelo de Paso Único Recurrente. 



Separación en Entrenamiento, Validación y Prueba

El período de análisis comienza desde el primero de enero de 2021 en adelante, con registros horarios de demanda. Este punto de inicio fue seleccionado debido a que los patrones de consumo fueron afectados por la pandemia del COVID-19, los datos a partir del 2021 para la demanda del Ecuador retomaron la tendencia y patrones de consumo. Adicionalmente usar conjuntos relativamente cortos evita cambios bruscos en los patrones de consumo de energía.


	División temporal de los datos

Los datos se dividen de forma cronológica en conjuntos de entrenamiento, validación y prueba como se indica en la Figura 3, evitando cualquier fuga de información temporal. El conjunto de entrenamiento se utiliza para el ajuste de los modelos, el conjunto de validación para la selección de hiperparámetros y el conjunto de prueba para la evaluación final del desempeño.
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Figura 5: Representación de División de Datos en Entrenamiento, Validación y Prueba

Para el entrenamiento de los modelos, se usa el 80% del conjunto total de datos para ser usados en la etapa de entrenamiento y 20% en la etapa de prueba.


	Configuración de los Modelos

Esta sección describe la configuración de los modelos considerados en el estudio, detallando su arquitectura.


	Arquitectura de la red LSTM

La arquitectura LSTM se definió con una configuración base fija, utilizada durante el estudio de ablación de variables exógenas con el fin de aislar su impacto en el desempeño predictivo.

La arquitectura LSTM usada esta compuesta por una primera capa LSTM con 64 unidades, seguida por una capa de dropout, una segunda capa LSTM con 32 unidades, otra capa de dropout y una capa densa de salida (Dense(1)). Esta estructura está diseñada para capturar tanto las dependencias temporales de mediano plazo como las relaciones no lineales presentes en la serie de demanda eléctrica. La elección del número de unidades LSTM (64 y 32) corresponde a la búsqueda de un equilibrio entre la capacidad de modelado y la complejidad computacional [8], incrementar el tamaño de las capas puede conducir a un mayor riesgo de overfitting y tiempos de entrenamiento más largos sin beneficios proporcionales en precisión .

 

Tabla 1: Arquitectura de las LSTM
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La inclusión de capas dropout con una tasa moderada (~0.2) actúa como una técnica de regularización, reduciendo la co-adaptación de neuronas y ayudando a prevenir el sobreajuste del modelo durante el entrenamiento [9]. Esta práctica es recomendada en la literatura para modelos recurrentes, ya que introduce ruido estocástico controlado en el proceso de aprendizaje y mejora la capacidad de generalización del modelo.

Finalmente, la capa densa de salida con una neurona permite mapear la representación interna de la secuencia hacia un único valor de predicción continua, que en este caso corresponde a la demanda horaria. En la  Tabla 1 se presenta un resumen de la arquitectura usada para la red neuronal LSTM.


	Arquitectura del modelo Xgboost

El modelo XGBoost fue configurado mediante un conjunto de hiperparámetros que incluyen el número de árboles (n_estimators), la profundidad máxima de los árboles (max_depth), la tasa de aprendizaje (learning_rate), el tamaño mínimo de muestras por hoja y los parámetros de regularización, los cuales permiten controlar la complejidad del modelo y mitigar el sobreajuste. Al igual que en el caso del modelo LSTM, esta configuración se mantuvo fija durante todo el estudio de ablación de variables exógenas, con el objetivo de aislar el impacto real de la información de entrada sobre el desempeño predictivo.

En particular, se emplearon 100 estimadores, una tasa de aprendizaje de 0.02 y una profundidad máxima de 50. La elección de una tasa de aprendizaje reducida responde a la necesidad de garantizar un proceso de optimización estable, ya que valores elevados del learning rate pueden generar convergencia inestable o conducir a soluciones subóptimas [10]. Este valor se compensó mediante un número moderado de estimadores, permitiendo que el modelo aprenda de forma progresiva y controlada.

Asimismo, se partió de una configuración con una capacidad de representación elevada, tanto en términos de profundidad como de número de árboles, bajo la premisa de que, una vez alcanzado un nivel adecuado de generalización, incrementos adicionales en estos hiperparámetros no suelen traducirse en mejoras significativas de precisión, sino únicamente en un aumento del costo computacional y del tiempo de entrenamiento [10].

Con la finalidad de evitar un overfitting en [11], documentación oficial de xgboost, se configura en paro de entrenamiento temprano o “early_stopping” el cual evita que el modelo se sobre ajuste restaurando los mejores hiperarámetros después de 15 iteraciones.

De este modo, se asegura que el desempeño del modelo no esté limitado por su capacidad estructural y que las diferencias observadas se atribuyan principalmente a la contribución de las variables consideradas.


	Criterios de reproducibilidad

Con el propósito de asegurar la reproducibilidad y la trazabilidad de los experimentos realizados, se definieron explícitamente mecanismos de control de la aleatoriedad y se documentó de manera detallada el entorno computacional empleado.

En particular, se fijó la semilla aleatoria con el valor 42 en todas las librerías relevantes, con el fin de reducir la variabilidad asociada a los procesos estocásticos inherentes al entrenamiento y evaluación de los modelos.

Asimismo, se especifican las versiones exactas del software utilizado:


	
		Xgboost 3.1.2 

		numpy 2.4.0 

		pandas 2.3.3

		tensorflow 2.20.0

		scikit-learn 1.8.0

		Python 3.13.5



Los experimentos se ejecutaron en un sistema equipado con un procesador Intel Core i7-12700H y 16 GB de memoria RAM a 3200 MHz, lo que proporciona un marco de referencia claro sobre los recursos computacionales disponibles y permite evaluar la reproducibilidad y viabilidad de los resultados en condiciones de hardware comparables.

Todos los experimentos se realizaron bajo condiciones de operación idénticas.


	ESTUDIO DE ABLACIÓN

El diseño del estudio de ablación se orienta a evaluar de forma sistemática la contribución individual y conjunta de los distintos componentes del modelo y de las variables exógenas incorporadas al proceso de predicción. A través de la eliminación controlada y progresiva de conjuntos específicos de características, y manteniendo constantes el protocolo experimental y la configuración de los modelos, se analiza el impacto real de cada elemento sobre el desempeño predictivo. Este enfoque permite identificar los factores más relevantes en la modelación de la demanda eléctrica y proporciona una base objetiva para la interpretación de los resultados y la validación de las decisiones metodológicas adoptadas [12], [13].


	Escenarios del Estudio de Ablación

El estudio de ablación se estructuró mediante un conjunto de escenarios diseñados para evaluar de forma progresiva el aporte de cada grupo de variables al desempeño predictivo de los modelos. Cada escenario incorpora un subconjunto específico de características, partiendo de una configuración base que considera únicamente la demanda histórica y añadiendo gradualmente variables exógenas de distinta naturaleza. Esta estrategia permite cuantificar de manera aislada y comparativa la contribución de las variables meteorológicas, de calendario y de codificación temporal, así como su efecto combinado sobre la capacidad predictiva del sistema.

 

Tabla 2: Descripción de los Escenarios de Ablación
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Métricas de Evaluación

Las métricas de evaluación permiten evaluar el desempeño de los modelos de predicción, métricas comúnmente utilizadas en problemas de regresión y pronóstico de series temporales son el error medio absoluto, raíz del error cuadrático medio y coeficiente de determinación, con el objetivo de cuantificar la precisión y consistencia de las estimaciones respecto a los valores reales observados


	Error medio absoluto (MAE)

El Error Medio Absoluto (Mean Absolute Error) calcula el valor absoluto entre el promedio de las diferencias de los valores predichos con los observados [14]. Su cálculo se realiza con la ecuación 1.
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Donde:

es el valor real de la demanda en el instante ,

es el valor pronosticado,

es el número total de observaciones

En términos prácticos, el MAE indica cuántas unidades (por ejemplo, MW) se equivoca el modelo, en promedio, al realizar la predicción.
Un MAE menor implica mayor precisión promedio



Raíz cuadrática del error medio (RMSE)

Esta métrica mide el tamaño promedio de los errores penalizo con mayor fuerza a los errores grades debido al cuadrado. Esta métrica es útil para detectar errores puntuales significativos del modelo [15]. Su cálculo está dada por la siguiente expresión:

 

[image: Image]

 

Donde:

es el valor real de la demanda en el instante ,

es el valor pronosticado,

es el número total de observaciones

Un RMSE bajo indica que las predicciones, en promedio, están cerca de los valores reales


	Coeficiente de determinación (R2)

Esta métrica expresa el grado en el que el modelo se ajusta, indicando la proporcione de la variabilidad total [15]. Su cálculo se realiza con la siguiente expresión:
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Donde:

es el valor real de la demanda en el instante ,

es el valor pronosticado,

es el número total de observaciones

Valores cercanos a 1 se interpretan como una alta capacidad predictiva.


	Error porcentual absoluto medio (MAPE)

El Error Porcentual Absoluto Medio (MAPE) permite expresar el error como un porcentaje respecto al valor real de la demanda [16]. Su cálculo esta dado por la siguiente expresión:
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Donde:

es el valor real de la demanda en el instante ,

es el valor pronosticado,

es el número total de observaciones,



RESULTADOS

Las predicciones se evaluaron bajo un mismo rango de tiempo, del 8 de agosto de 2024 al 8 de septiembre de 2024. Los resultados del estudio de ablación para el modelo XGboost se presentan en la Tabla 3 mientras que para el LSTM se presentan en la Tabla 4.

 

Tabla 3: Resultados de Estudio de Ablación para el Modelo XGboost


	
		
				
Modelo


				
MAE


				
RMSE


				
MAPE


				
R2


		

		
				
A0


				
268.47


				
323.41


				
7.25


				
0.43


		

		
				
A1


				
265.68


				
319.85


				
7.18


				
0.44


		

		
				
A2


				
269.57


				
325.35


				
7.27


				
0.42


		

		
				
A3


				
291.29


				
359.04


				
7.89


				
0.30


		

	

 

Tabla 4: Resultados de Estudio de Ablación para el modelo LSTM


	
		
				
Modelo


				
MAE


				
RMSE


				
MAPE


				
R2  


		

		
				
A0


				
217.80


				
268.60


				
5.59


				
0.57


		

		
				
A1


				
254.96


				
321.41


				
6.50


				
0.39


		

		
				
A2


				
262.46


				
327.50


				
6.69


				
0.37


		

		
				
A3


				
363.45


				
472.80


				
9.22


				
-0.32


		

	

 

Las métricas indican que el mejor resultado la obtuvo el modelo LSTM con todas las variables exógenas, seguido del modelo XGboost que no incluye variables meteorológicas.

Contrario a lo que se esperaba, el desempeño del modelo XGboost no incrementa significativamente con la inclusión de la temperatura aparente ni con la variable de días feriados, sin embargo la codificación temporal si ayuda significativamente al proceso de prediccioón, en contraste el modelo de red LSTM presenta una notable mejoría con la inclusión de la variable de la temperatura aparente de la ciudad de Guayaquil coincidiendo con la experiencia de los departamentos de operación y planificación del CENACE.

Visualmente la diferencia entre los dos modelos se puede apreciar en la Figura 6, donde se muestra gráficamente la diferencia entre los dos modelos.

Los tiempos de entrenamiento en promedio por modelo se presentan en la Figura 7
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Figura 6: Comparativa Modelos LSTM vs. XGboost vs. Demanda real el 9 de septiembre de 2024 
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Figura 7: Comparación de tiempos de entrenamiento



CONCLUSIONES

Los resultados del estudio confirman que la red neuronal LSTM, al incorporar el conjunto completo de variables exógenas, presenta el mejor desempeño global en la tarea de pronóstico de la demanda eléctrica. Su arquitectura recurrente le permite capturar de manera efectiva dependencias temporales no lineales y patrones complejos, lo que se traduce en mejoras consistentes respecto al modelo XGBoost bajo todos los escenarios de evaluación considerados.

El análisis del estudio de ablación evidencia que la temperatura aparente de la ciudad de Guayaquil constituye una de las variables exógenas más relevantes para el modelo LSTM. Su inclusión mejora de forma significativa la precisión de las predicciones, lo cual es coherente con la experiencia operativa del personal de planificación y operación del CENACE, y confirma que el comportamiento de la demanda eléctrica nacional está fuertemente influenciado por el consumo de esta ciudad.

En contraste, el modelo XGBoost muestra una sensibilidad limitada frente a variables meteorológicas y de calendario, como la temperatura y los días feriados. Sin embargo, la incorporación de la codificación temporal permite una mejora apreciable en su desempeño, al facilitar la captura de la estacionalidad y los patrones periódicos de la demanda, lo que refuerza la importancia de este tipo de representaciones en modelos basados en árboles.

Desde el punto de vista computacional, se observa una diferencia clara entre ambos enfoques. El modelo LSTM, si bien ofrece mayor precisión, requiere tiempos de entrenamiento más elevados, mientras que XGBoost destaca por su rapidez y eficiencia computacional, aunque con un desempeño predictivo inferior. En este contexto, los resultados sugieren que el modelo LSTM es más adecuado para la planificación operativa del sistema eléctrico con un horizonte de 24 horas de antelación, mientras que XGBoost puede emplearse como una herramienta complementaria para la estimación rápida de tendencias intra-horarias, aportando información útil en escenarios donde el tiempo de cómputo es un factor crítico.


	RECOMENDACIONES

Como líneas de trabajo futuro, se recomienda profundizar el análisis experimental mediante estudios adicionales que permitan optimizar el desempeño y la eficiencia computacional de los modelos evaluados. En primer lugar, resulta pertinente realizar un estudio de ablación específico orientado a determinar el número óptimo de lags para cada modelo, con el fin de identificar la longitud de la ventana temporal que maximiza la capacidad predictiva sin introducir redundancia innecesaria en las entradas.

En segundo lugar, se sugiere desarrollar un análisis sistemático del número de estimadores del modelo XGBoost, buscando una configuración que permita reducir aún más los tiempos de entrenamiento y predicción sin comprometer significativamente la precisión. Este estudio podría aportar criterios prácticos para el uso del modelo en escenarios operativos donde la eficiencia computacional es prioritaria.

Adicionalmente, se recomienda explorar arquitecturas LSTM de mayor profundidad, incorporando un mayor número de capas ocultas, con el objetivo de evaluar si un aprendizaje más profundo es capaz de capturar patrones adicionales y mejorar el pronóstico de la demanda eléctrica. Este análisis permitiría establecer un balance más claro entre complejidad del modelo, precisión y costo computacional.

Finalmente, se propone ampliar el conjunto de variables meteorológicas consideradas, incorporando temperaturas de otras ciudades relevantes del país para analizar su posible influencia sobre la demanda eléctrica nacional. En particular, resulta de interés evaluar ciudades como Quito y Cuenca, ubicadas en la cordillera de los Andes, donde las condiciones climáticas difieren sustancialmente de las zonas costeras y podrían presentar una relación distinta, e incluso inversa, entre temperatura y demanda, asociada a un mayor uso de sistemas de calefacción.
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