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Resumen:

La representación adecuada del comportamiento dinámico de las cargas y la captura de la variabilidad temporal de sus parámetros constituye un elemento fundamental en el análisis y operación de los sistemas eléctricos. Para ello, se emplean metodologías de modelamiento de carga automáticas y en línea, modelos de carga dinámicos y, se aprovechan las ventajas de las mediciones sincrofasoriales. Entre los modelos más utilizados se encuentra el Exponential Recovery Load (ERL), capaz de representar no solo el comportamiento estático de las cargas, sino también la dinámica de recuperación exponencial frente a perturbaciones de tensión. No obstante, el proceso de identificación paramétrica de este modelo ha sido superficialmente abordado en estudios previos, lo que deja abiertas interrogantes sobre su estimación precisa en entornos reales. Este trabajo aborda de forma integral dicho proceso de identificación, considerando desde la selección del algoritmo de optimización más adecuado, con énfasis en esquemas automáticos, en línea y basados en mediciones sincrofasoriales, hasta la determinación de los requisitos mínimos que deben cumplir estas mediciones para garantizar estimaciones confiables del modelo ERL. Los resultados muestran que los algoritmos Trust-region-reflective, Interior-point y SQP ofrecen el mejor desempeño en la estimación de parámetros del modelo. Asimismo, se evidencia que las mediciones sincrofasoriales deben registrar variaciones de tensión de al menos 0.003 pu para asegurar una identificación precisa..
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Abstract:

The accurate representation of the dynamic behavior of loads and the capture of the temporal variability of their parameters is a fundamental element in the analysis and operation of electrical systems. To this end, automatic and online load modeling methodologies and dynamic load models are used, and the advantages of synchrophasor measurements are exploited. Among the most widely used models is the Exponential Recovery Load (ERL), capable of representing not only the static behavior of loads, but also the dynamics of exponential recovery in the presence of voltage disturbances. However, the process of parametric identification of this model has been superficially researched in previous studies, leaving open questions about its accurate estimation in real environments. This work comprehensively addresses this identification process, considering everything from the selection of the most appropriate optimization algorithm, with an emphasis on automatic, online, and synchrophasor-based schemes, to the determination of the minimum requirements that these measurements must meet to ensure reliable estimates of the ERL model. The results show that the Trust-region-reflective, Interior-point, and SQP algorithms offer the best performance in estimating model parameters. Likewise, it is demonstrated that synchrophasor measurements must record voltage variations of at least 0.003 pu to ensure accurate parameter identification.
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		INTRODUCCIÓN



Actualmente contar con modelos dinámicos validados de los sistemas eléctricos de potencia es un tema fundamental, pues los sistemas operan cada vez más cerca de sus límites y en consecuencia requieren de estudios y simulaciones de mayor precisión [1]. Uno de los elementos más difíciles de validar son las cargas, específicamente sus modelos, pues estos varían continuamente en el tiempo [2], a diferencia de, por ejemplo, los modelos de un transformador o de un generador síncrono.

A pesar de esta necesidad, gran parte de las industrias del sector eléctrico a nivel mundial utilizan modelos de carga estáticos para realizar estudios en estado dinámico [3]. Esta brecha ha impulsado una tendencia creciente por investigar procesos de identificación paramétrica (estimación de los valores de los parámetros de los modelos de carga) automáticos y que se ejecuten continuamente en línea [2], aprovechando las mediciones sincrofasoriales reportadas por Unidades de Medición Fasorial (PMU) [4], [5], cuya alta tasa de reporte, de hasta 50 o 60 fasores por segundo (FPS, Frames per Second) [6], permite capturar el comportamiento dinámico de las cargas.

Desde la perspectiva de la estabilidad de tensión, uno de los elementos más relevantes por modelar son los motores de inducción [7], sin embargo, su modelo dinámico es complejo, por lo cual, en la literatura, se han planteado modelos dinámicos simplificados. Uno de estos es el Exponential Recovery Load (ERL), el cual es aplicado en escenarios donde la carga se recupera de forma exponencial luego de un cambio repentino en la tensión [4], [5].

El proceso de identificación paramétrica del modelo ERL ha sido abordado en varios trabajos. En [8] se resuelve el problema de optimización del proceso de identificación paramétrica con el método de optimización Trust-region-reflective. En [9] y [10] se menciona mínimo cuadrados no lineales, pero no se indica el algoritmo de solución. En [11] se compara Least-Squares (LS), Genetic Algorithm (GA) y Simulated Annealing (SA), donde recomienda el primero, aunque no indica el algoritmo de solución. En [12] se utiliza Levenberg-marquardt y en [13] Genetic Algorithm. Además, ninguno de los trabajos precitados determina las características mínimas que deben contener las mediciones con el objeto de lograr estimar con suficiente precisión los parámetros del modelo de carga ERL.

Con base en el análisis precitado del estado del arte, se encuentran las siguientes áreas que requieren mayor investigación y que son objeto de este trabajo:


	
		Evaluar el desempeño de diferentes algoritmos de optimización en la estimación paramétrica del modelo de carga ERL, de manera que se determine el que mejor desempeño alcance y sea idóneo para esta aplicación, considerando la tendencia actual de que los procesos de identificación paramétrica tienden a ser automáticos y en línea [14]. En esta evaluación es importante considerar el ruido contenido en las mediciones sincrofasoriales, pues el objetivo es determinar el mejor algoritmo de optimización para ser utilizado en entornos prácticos.

		Establecer las variaciones de tensión mínimas requeridas para lograr estimar los parámetros del modelo ERL con suficiente precisión [14], de manera que se puedan utilizar las metodologías de identificación paramétrica con mediciones sincrofasoriales reales. 

		Determinar si el ruido contenido en las mediciones sincrofasoriales reduce el desempeño de los procesos de identificación paramétrica del modelo de carga ERL, pues en [15], [16] se concluye que el ruido tiene un impacto negativo en la estimación paramétrica del modelo de carga ZIP.



Con el propósito de alcanzar los objetivos planteados, este trabajo se estructura de la siguiente manera: la sección 2 presenta el marco teórico que sustenta este estudio; la sección 3 plantea la metodología utilizada para evaluar el desempeño de distintos algoritmos de optimización en el modelamiento de carga; la sección 4 presenta los resultados obtenidos a partir de las simulaciones y análisis realizados y; la sección 5 recoge las conclusiones de esta investigación.


	
		MARCO TEÓRICO




2.1 Modelo Exponential Recovery Load (ERL)



El modelo de carga investigado en este trabajo es el modelo Exponential Recovery Load (ERL), el cual se define en las ecuaciones (1) y (2) para la potencia activa y, tal como se observa, es un modelo diferencial de primer orden [8].
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Donde:  es la tensión inicial,  es la tensión medida por ejemplo por una PMU,  es una constante de tiempo de recuperación de la potencia activa,  es la potencia activa de recuperación (es una función de ),  es la potencia activa inicial,  es la potencia activa consumida por la carga (variable de salida),  es un parámetro para potencia activa en estado estable y,  es un parámetro para potencia activa transitoria.

Ecuaciones análogas a (1) y (2) se utilizan para el modelo ERL de potencia reactiva.


2.2 Identificación Paramétrica del Modelo ERL 



El proceso de identificación paramétrica tiene como objetivo estimar los tres parámetros del modelo ERL de potencia activa y los tres parámetros del modelo ERL de potencia reactiva, de manera que una vez ajustados, el modelo reproduzca fielmente el comportamiento real de las cargas.

Para el modelo ERL de potencia activa, la idea es encontrar los valores de los parámetros ,  y  que minimicen la función objetivo (3), pero sujeto a las restricciones (4) y (5) [11]. Un proceso análogo se repite para los tres parámetros que definen el modelo ERL de potencia reactiva, con las mismas restricciones (4) y (5).
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Donde:  es la potencia calculada con el modelo de carga ERL,  es la potencia efectivamente medida por una PMU,  es la cantidad de muestras de las mediciones.  y  de (4) y (5) son los límites inferiores y superiores, respectivamente, y su orden es: ,  y .

Los límites superiores () e inferiores () de (4) y (5) han sido establecidos de acuerdo con los valores recomendados en [8]-[13].


2.3 Algoritmos de Optimización



Los procesos de identificación paramétrica tienen como base un problema de optimización que se resuelve mediante un algoritmo de optimización. En la literatura existe un gran número de estos algoritmos, sin embargo, en este trabajo se compara el desempeño de los 10 algoritmos mostrados en la Tabla 1, pues son los más utilizados en la literatura en el modelamiento de carga [14].

Tabla 1: Algoritmos de Optimización Utilizados en este Trabajo.

[image: Image]

De manera general, los algoritmos de optimización se clasifican en tradicionales y heurísticos. Los tradicionales son utilizados para encontrar mínimos locales en la función objetivo, mientras los heurísticos se enfocan en mínimos globales, sin embargo, estos últimos requieren un mayor poder de cálculo, mayor tiempo de ejecución y, suelen alcanzar una menor precisión, pero generalmente suficiente. Dado que los algoritmos de optimización se encuentran bien documentados en la literatura, no se los detalla en este trabajo.  Además, se encuentran ampliamente implementados en programas de uso comercial y gratuitos, como MATLAB y Python. Para profundizar en las características de estos algoritmos se recomienda referirse a [17], sin embargo, es importante mencionar que los 10 algoritmos presentados en la Tabla 1 tienen la capacidad de manejar restricciones de límites superiores e inferiores, como los definidos en este problema de optimización en las ecuaciones (4) y (5).


	
		METODOLOGÍA



La metodología para evaluar diferentes métodos de optimización en la estimación paramétrica del modelo de carga ERL se sintetiza en el diagrama de flujo de la Figura 1. Cada una de las etapas mostradas en esta figura se detallan a continuación:
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Figura 1: Diagrama de Flujo de la Metodología para Evaluar Diferentes Métodos de Optimización en la Estimación Paramétrica del Modelo de Carga ERL.

 


3.1 Generación de Mediciones Sincrofasoriales Sintéticas



Con el fin de comparar el desempeño de diversos algoritmos de optimización, resulta indispensable realizar pruebas controladas a nivel de laboratorio. Para ello, se emplean mediciones sincrofasoriales sintéticas generadas mediante simulaciones computacionales. Para esto se plantea el siguiente proceso:


	
		Elegir un sistema de prueba de los de la literatura. Configurar las cargas de este sistema para que se comporten conforme el modelo de carga ERL.

		Mediante Monte Carlo generar diversos y suficientes escenarios de operación donde varie la demanda del sistema, mediante la selección aleatoria, con función de densidad uniforme, de la hora del día, y tomar de esta hora la demanda de diferentes curvas típicas de demanda, como residencial, comercial e industrial.

		Ejecutar, para cada escenario, un flujo óptimo de potencia con el fin de determinar el despacho de cada generador. En caso de requerir, puede realizarse previamente un proceso de Unit Commitment, sin embargo, este no incide directamente en los objetivos de la presente investigación, por lo que no se considera en el análisis principal.

		Mediante Montecarlo generar eventos para cada escenario de operación, como fallas, variaciones de carga, cambio en los TAP de los transformadores, entre otros, con función de densidad uniforme. Para las variaciones de la carga se pueden utilizar funciones de densidad con mayor probabilidad de cambios menores en la demanda.

		Ejecutar simulaciones en el dominio fasorial (RMS).

		Guardar las simulaciones de tensión, potencia activa y reactiva de las barras de carga del sistema, con una tasa de muestreo igual a como lo haría una PMU instalada en dicha barra. Para este trabajo se ha elegido igual a la frecuencia de la red, es decir, 50 o 60 FPS. Las tasas de muestreo de las PMU se pueden consultar en [6].

		Finalmente, añadir ruido blanco Gaussiano con los valores de SNR (signal-to-noise ratio) mostrados en (6), de manera que las mediciones sintéticas sean similares a las reales [16].
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3.2 Indicadores de Desempeño



El proceso de identificación paramétrica, descrito en la sección 2.2, se ejecuta para cada barra de carga del sistema de prueba, para cada escenario de operación, y con cada uno de los diez algoritmos de optimización de la Tabla 1. Con el objeto de comparar el desempeño de cada uno de estos algoritmos se utilizan los siguientes cuatro indicadores, los cuales son planteados en [14].


3.2.1 Tiempo de ejecución



Este indicador cuantifica el tiempo que tarda un algoritmo de optimización en encontrar una solución viable, es decir, que minimice la función objetivo y que cumpla con las restricciones. Para que un algoritmo sea adecuado para una metodología de modelamiento de carga automatice y en línea, el objetivo es que este tiempo esté en el orden de unas cuantas decenas de segundo [2].

 


3.2.2 Cantidad de soluciones viables (CSV)



El indicador CSV representa el porcentaje de escenarios en los que un algoritmo de optimización logra encontrar una solución viable, es decir, minimizar la función objetivo satisfaciendo las restricciones.


3.2.3 Error en la estimación de parámetros (EEP)



El indicador EEP permite cuantificar el error (en porcentaje) asociado a la estimación de los tres parámetros que definen al modelo ERL. Este indicar se calcula por separado para los modelos ERL de potencia activa y reactiva, y se define como sigue:
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Donde: y  son vectores que contienen los tres parámetros reales y estimados, respectivamente, del modelo de carga ERL. Los límites inferiores () y superiores () son los mostrados en (4) y (5).

Cabe destacar que el indicador EEP no es aplicable en entornos reales, dado que los valores verdaderos de los parámetros del modelo ERL no son conocidos. A pesar de esto, su utilidad radica en el contexto de simulación, donde permite comparar objetivamente el desempeño de distintos algoritmos de optimización.


3.2.4 Error cuadrático medio estandarizado ()



Este indicador está enfocado específicamente para comparar el desempeño de diferentes métodos de optimización en el modelamiento de carga y se basa en el conocido Error Cuadrático Medio, pero estandarizado con respecto a la magnitud de variación de la potencia (), tal como se observa a continuación:
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Donde: ,  y  se definen de forma similar que para (3) y,  es la magnitud de variación de potencia (activa o reactiva) que se calcula como la diferencia entre el valor máximo y mínimo que alcanza la potencia en la ventana de tiempo a utilizar.


3.3 Evaluación del Desempeño de los Algoritmos de Optimización



El desempeño de los algoritmos de optimización para la estimación de los parámetros del modelo ERL se evalúa y compara mediante los cuatro indicadores previamente definidos y al utilizar tres tipos de mediciones sincrofasoriales: sin ruido, con ruido, y filtradas (señales con ruido sometidas a una etapa de filtrado). El objetivo es verificar que los algoritmos de optimización mantengan un rendimiento adecuado con estos tres tipos de señales, ya que en [14] se observa que ciertos algoritmos no son robustos frente al ruido (las mediciones sincrofasoriales contienen ruido en el mundo real).

Adicionalmente, se recomienda que los indicadores, exceptuando el tiempo de ejecución, sean analizados en función de la magnitud de variación de tensión (). En particular, resulta crítico observar el comportamiento de los algoritmos ante datos tipo ambiente () de PMU, pues son los más comunes y disponibles en los sistemas eléctricos reales.


3.4 Determinación del Algoritmo de Identificación Paramétrica del Modelo de Carga ERL



Tal como se observa en la Figura 1, y una vez definido el mejor método de optimización para estimar los parámetros del modelo de carga ERL, la última etapa consiste en determinar el algoritmo de identificación paramétrica para este modelo. Para esto es necesario: definir los requisitos mínimos en las mediciones sincrofasoriales, en lo que respecta a la mínima variación de tensión que es necesaria para asegurar con gran probabilidad que los parámetros estimados del modelo ERL son precisos y; los valores de   que indiquen con gran probabilidad que el modelo fue estimado con suficiente precisión.


	
		RESULTADOS




4.1 Sistema de Prueba



Para el desarrollo de este trabajo se ha seleccionado y empleado como sistema de prueba el modelo IEEE de 39 barras implementado en PowerFactory, no obstante, de acuerdo con la metodología planteada en la sección 3.1, se han realizado las siguientes adaptaciones:


	
		Las 19 cargas que conforman este sistema han sido configuradas para que se comporten según el modelo ERL, sin embargo, dado que el modelo ERL no está disponible de forma nativa en PowerFactory, se lo ha programado en lenguaje DSL (DIgSILENT Simulation Language).

		Con base en Monte Carlo se han construido 11 mil diferentes escenarios de operación y en cada uno de ellos se varia de forma aleatoria: los parámetros de los modelos ERL de cada una de las cargas de acuerdo con los valores recomendados en [8]-[13]; la demanda de cada carga de acuerdo con la selección aleatoria de la potencia consumida, a cierta hora del día, de una curva de demanda, sea residencial, comercial o industrial. Todo esto se realiza con programación DPL (DIgSILENT Programming Language).

		Se ejecuta un flujo óptimo de potencia (OPF) para obtener el despacho económico de cada generador. No se realizó un proceso previo de Unit Commitment, por lo que todos los generadores estuvieron disponibles para el OPF.

		Se asigna de forma aleatoria a cada escenario de operación un evento. Los eventos pueden ser: cambio en el TAP de un transformador, variación con magnitud aleatoria de la demanda de una carga, falla en una línea de transmisión a una distancia aleatoria, o salida aleatoria de un generador.

		Para cada escenario se realizan 10 segundos de simulaciones dinámicas del tipo fasorial (RMS). 

		En archivos planos se guardan las simulaciones, específicamente las variables de tensión, potencia activa y potencia reactiva. La tasa de muestreo es de 60 FPS.

		Se agrega ruido con los valores de SNR de (6).



A partir de lo descrito previamente, se han simulado los escenarios de operación y se han almacenado las correspondientes mediciones sincrofasoriales sintéticas. La cantidad de registros, agrupados por magnitud de variación de tensión (ΔV), se presentan en la Figura 2. La cantidad mínima de registros en las barras de la Figura 2 es de 86, y se da para ΔV entre 0.13 y 0.14 pu.

Finalmente, para evitar sesgos en los resultados de los procesos de identificación paramétrica derivados de una distribución desigual en la cantidad de registros por magnitud de variación de tensión (ΔV), se ha establecido un límite uniforme de 86 registros para cada rango mostrado en la Figura 2. De esta manera, dado que se tienen 63 barras en la Figura 2, se obtiene un total de  registros.
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Figura 2: Cantidad de Escenarios por Magnitud de Variación de Tensión.

 


4.2 Evaluación del desempeño de los Algoritmos de Optimización




4.2.1 Tiempo de ejecución



La Figura 3 presenta los tiempos de ejecución asociados a la estimación del modelo ERL de potencia reactiva, utilizando mediciones sincrofasoriales filtradas. Esta figura contiene diez diagramas de caja, correspondientes a los diez algoritmos de optimización enumerados en la Tabla 1, manteniendo el mismo orden de presentación. La elección de diagramas de caja responde a la necesidad de representar la distribución estadística del tiempo de ejecución calculado para los  registros obtenidos del sistema de prueba.

Al analizar la Figura 3 se concluye que los tiempos de ejecución asociados a la estimación del modelo ERL son reducidos en la mayoría de los casos, con excepción de los algoritmos Genetic Algorithm y Simulated annealing, que presentan una carga computacional significativamente mayor. Este comportamiento sugiere que, salvo los dos algoritmos precitados, los restantes son adecuados para su implementación en esquemas de identificación paramétrica automáticos y en línea del modelo ERL, tal como se requiere en aplicaciones modernas de los sistemas eléctricos.

Por último, cabe señalar que los tiempos obtenidos para la estimación del modelo ERL de potencia activa, así como al utilizar señales con o sin ruido, son idénticos a los de la Figura 3.
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Figura 3: Tiempo de Ejecución de 10 Algoritmos de Optimización.

 


4.2.2 Cantidad de Soluciones Viables (CSV)



La Figura 4 presenta los valores del indicador CSV obtenidos para cada uno de los diez algoritmos de optimización, clasificados según la magnitud de variación de tensión (). Estos resultados corresponden a la estimación de los modelos ERL de potencia activa, aunque los valores alcanzados para el modelo de potencia reactiva (Q) son muy similares.

En la Figura 4 se muestra la comparación del desempeño de los algoritmos bajo dos condiciones: al utilizar mediciones sincrofasoriales sin ruido, Figura 4 a), y al emplear mediciones con ruido más una etapa de filtrado, Figura 4 b).

Al analizar conjuntamente las gráficas a) y b) de la Figura 4 se concluye lo siguiente:


	
		El algoritmo Active-set es el que menor desempeño alcanza, por lo que no se recomienda su utilización en la estimación paramétrica del modelo ERL.

		Todos los algoritmos, salvo Active-set, presentan un desempeño ideal al emplear mediciones sin ruido. Por el contrario, al utilizar señales filtradas (en el mundo real las mediciones sincrofasoriales tienen ruido y se las filtra), su desempeño se reduce considerablemente, sobre todo para datos tipo ambiente de PMU (mediciones con  menores a 0.03 pu [14]), que vale aclarar, son los de mayor disponibilidad en un sistema eléctrico.

		Al emplear señales filtradas, Figura 4 b), los algoritmos Simulated annealing y Differential evolution presentan un desempeño menor a los otros algoritmos, por lo que se concluye que no son los más adecuados para esta aplicación.

		Los algoritmos Trust-region-reflective, Levenberg-marquardt, Interior-point y SQP, hasta este punto del análisis, son los más adecuados para esta aplicación. Pattern search y Genetic algorithm, aunque tienen un desempeño similar a los otros algoritmos en la Figura 4 b), requieren de considerables mayores recursos computacionales, tal como se observa en la Figura 3.




4.2.3 Error en la Estimación de Parámetros (EEP)



La Figura 5 presenta la media del EEP obtenido para cada uno de los diez algoritmos de optimización, clasificados según la magnitud de variación de tensión (). Estos resultados corresponden a la estimación de los modelos ERL de potencia reactiva, aunque los valores alcanzados para el modelo de potencia activa (P) son similares.

En la Figura 5 se muestra la comparación del desempeño de los algoritmos bajo dos condiciones: al utilizar mediciones sincrofasoriales sin ruido, Figura 5 a), y al emplear mediciones con ruido más una etapa de filtrado, Figura 5 b).

Al analizar conjuntamente las gráficas a) y b) de la Figura 5 se obtienen las mismas conclusiones que para el indicador anterior (CSV), donde, en resumen, se recomienda utilizar cualquiera de los siguientes algoritmos: Trust-region-reflective, Levenberg-marquardt, Interior-point o SQP.


4.2.4 Error Cuadrático Medio Estandarizado ()



En la Figura 6 se presenta la media del indicador , clasificado por magnitud de variación de tensión (), al estimar el modelo ERL de potencia activa con mediciones sincrofasoriales filtradas. Una figura similar se obtiene para el modelo ERL de potencia reactiva.

Al analizar la Figura 6 se observa que todos los algoritmos alcanzan  similares, por lo cual, con base en este indicador, no se puede elegir un algoritmo por sobre otro. Este particular es un gran aporte al estado del arte, pues los pocos trabajos que comparan el desempeño de diferentes algoritmos de optimización en el modelamiento de carga utilizan como indicador el Error Cuadrático Medio (RMSE), sin embargo, en este trabajo se demuestra que los algoritmos, aunque alcanza los mismos valores de RMSE, no tienen el mismo desempeño. Como solución a este problema, justamente se debe investigar el mejor algoritmo de optimización para cada modelo de carga a estimar.
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Figura 4: Número de Soluciones Viables del Modelo ERL de Potencia Activa. a) Sin Ruido. b) Con Ruido + Filtro.
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Figura 5: EEP para el Modelo ERL de Potencia Reactiva. a) Sin Ruido. b) Con Ruido + Filtro.
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Figura 6: Media del  con Mediciones con Ruido + Filtro.

 


4.3 Algoritmo de Identificación Paramétrica del Modelo de Carga ERL



De la sección anterior se concluye que los algoritmos que alcanzan el mejor desempeño para la estimación de los parámetros del modelo ERL son Trust-region-reflective, Levenberg-marquardt, Interior-point y SQP. De estos se podría elegir utilizar cualquiera de ellos.

Una vez escogido uno de estos métodos, y con el fin de proponer un algoritmo de identificación paramétrica, es necesario determinar las características mínimas que deben contener las mediciones sincrofasoriales con el objeto de lograr estimar con precisión los parámetros de los modelos ERL. Para esto se analiza la Figura 4 b), en la cual se observa que a partir con  se logra estimar el modelo ERL en el 90% de escenarios. Este es un aporte al estado del arte, pues en ningún trabajo se determina este valor.

Por otro lado, otro tema que se debe definir para proponer un algoritmo de identificación paramétrica es el valor del indicador  bajo el cual se indique con gran probabilidad que el modelo ERL fue estimado con una precisión suficiente. Esto se da puesto que en el mundo real no se puede calcular el indicador EEP, pero si el . Para esto, en la Figura 7 a) se presenta la relación entre el  y el EEP, clasificado por rangos de , para el algoritmo de optimización Trust-region-reflective. Gráficas muy similares a la Figura 7 a) se obtienen para los algoritmos Interior-point y SQP. Por el contrario, para el algoritmo Levenberg-marquardt, esta relación entre  y EEP se presenta en la Figura 7 b).

Al analizar las dos Figuras 6 se observa claramente que el límite que se debe definir para el indicador  es 0.03, pues para valores superiores los EEP alcanzados crecen considerablemente.

Por otro lado, un tema bastante particular al comparar la dos Figuras 6 es que, para un  de 0.03, la Figura 7 a) alcanza menores EEP. Esto quiere decir que los algoritmos de optimización Trust-region-reflective, Interior-point y SQP tienen un desempeño superior a Levenberg-marquardt. Esto es un aporte al estado del arte, pues el algoritmo Levenberg-marquardt es uno de los más utilizados en el modelamiento de carga, sin embargo, en esta investigación se demuestra que existen otros algoritmos que alcanzan mejores desempeños.
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Figura 7:  vs EEP para el Método de Optimización a) Trust-Region-Reflective y b) Levenberg-Marquardt.

 

A partir de los resultados previamente obtenidos, se establece el siguiente algoritmo de identificación paramétrica para el modelo de carga ERL:


	
		Recepción de datos: se reciben mediciones sincrofasoriales correspondientes a una barra de carga y con una duración de 10 segundos.

		Preprocesamiento de datos: las mediciones se someten a una etapa de filtrado o suavizado de datos para reducir la influencia del ruido.

		Verificación de variación de tensión: se comprueba que la magnitud de variación de tensión () sea superior a 0.003 pu. 

		Si  se descarta la serie temporal y se espera por un nuevo conjunto de datos desde el paso 1.

		Si , se continua con el siguiente paso.

		Identificación paramétrica: se ejecuta el proceso de identificación paramétrica definido en la sección 2.2, utilizando uno de los siguientes algoritmos: Trust-region-reflective, Interior-point o SQP.

		Evaluación de la precisión: se calcula el indicador .

		Si , se considera que los parámetros del modelo ERL han sido estimados correctamente. 

		Si , se considera que el modelo ERL ha sido estimado con insuficiente precisión, por lo que se descartan los resultados y se espera por un nuevo conjunto de datos desde el paso 1.

		Reinicio del algoritmo: se vuelve al paso 1 y se espera por la recepción de un nuevo conjunto de datos.



	
		CONCLUSIONES Y TRABAJOS FUTUROS



En este trabajo se ha desarrollado un algoritmo de identificación paramétrica para el modelo de carga ERL, orientando su aplicación para metodologías automáticas y en línea que utilicen mediciones sincrofasoriales. Para ello, se ha llevado a cabo una evaluación comparativa de diez algoritmos de optimización, y se ha determinado que tres algoritmos alcanzan los mejores desempeños: Trust-region-reflective, Interior-point y SQP.

Asimismo, se ha establecido la magnitud mínima de variación de tensión requerida en las mediciones sincrofasoriales para garantizar con gran probabilidad una estimación confiable del modelo ERL. Finalmente, se ha determinado el valor límite del indicador , el cual permite inferir, con alta probabilidad, que el modelo ERL ha sido estimado con suficiente precisión.

Además de lo anterior, se ha demostrado que el algoritmo de optimización Levenberg-marquardt, que es uno de los más utilizados en el modelamiento de carga, no es el que alcanza los mejores resultados. Trust-region-reflective, Interior-point y SQP obtienen un desempeño superior.

Como trabajos futuros se plantea evaluar el algoritmo planteado en este trabajo con mediciones sincrofasoriales obtenidas de sistemas eléctricos reales.
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