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Resumen:

Actualmente modelar adecuadamente las cargas, representar su comportamiento dinámico y capturar las variaciones de los parámetros de los modelos de carga en el tiempo es un tema fundamental. Para esto hoy en día se utilizan mediciones sincrofasoriales, metodologías de modelamiento de carga automáticas y en línea y, nuevos modelos de carga dinámicos. En el último tiempo en un trabajo de investigación se ha planteado el Oscillatory Component Load Model (OCL), el cual tiene como aporte que permite representar no solamente el comportamiento estático y exponencial de recuperación de las cargas, sino también el comportamiento oscilatorio. En este sentido, el proceso de identificación paramétrica de este modelo OCL no ha sido investigado a profundidad, por lo que se lo realiza en este trabajo, desde determinar el mejor método de optimización para el proceso de identificación paramétrica, hasta las características que deben contener las mediciones sincrofasoriales para obtener modelos de carga OCL precisos..
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Abstract:

Currently, accurately modeling loads, representing their dynamic behavior, and capturing variations in load model parameters over time is a fundamental issue. To this end, synchrophasor measurements, automatic and online load modeling methodologies, and new dynamic load models are used today. Recently, a research project has proposed the Oscillatory Component Load (OCL) model, which has the advantage of representing not only the static and exponential recovery behavior of loads, but also their oscillatory behavior. In this regard, the parametric identification process of this OCL model has not been investigated in depth, therefore this work does so, from determining the best optimization method for the parametric identification process to determining the characteristics that synchrophasor measurements must contain to obtain accurate OCL models.
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		INTRODUCCIÓN



Los sistemas eléctricos de potencia operan cada vez más cerca de sus límites de estabilidad debido, principalmente, al crecimiento de la demanda y a la inclusión de centrales de generación con energías renovables. Esta situación conlleva a que progresivamente se deban realizar simulaciones más precisas, sobre todo en estado dinámico, para lo cual es necesario tener modelos validados de los componentes que conforman un sistema eléctrico [1]. Dentro de estos componentes, la carga es uno de los elementos más desafiantes de estimar, pues sus modelos varían continuamente con el tiempo [2], [3], a diferencia de, por ejemplo, las líneas de transmisión, cuyo modelo no cambia con el tiempo.

Además de lo anterior, representar adecuadamente la dinámica de las cargas es fundamental. Un claro ejemplo se muestra en la Figura 1 (tomada de [4]), la cual representa un apagón (black-out) ocurrido el 10 de agosto de 1996 en el sistema “Western Systems Coordinating Council (WSCC)” de EEUU, específicamente en la interconexión California-Oregon (COI) [4]. En la Figura 1 a) se muestra las mediciones reales de las oscilaciones de potencia. En la Figura 1 b) la respuesta simulada con un caso de estudio base. En la Figura 1 c) se observa la respuesta del sistema una vez realizado un proceso de validación a los modelos eléctricos de varios elementos de la red, entre ellos al modelo de la carga al cual se le añadió varias cargas estáticas y, la dinámica de los motores de inducción de los aires acondicionados. Este ejemplo permite resaltar la importancia de modelar adecuadamente el comportamiento estático y dinámico de las cargas.

Con base en lo anterior, para lograr capturar la dinámica de las cargas es necesario contar con sistemas de medición que lo permitan [5]. Las mediciones sincrofasoriales provenientes de Unidades de Medición
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Figura 1: Ejemplo de un Apagón en el Sistema WSCC. a) Mediciones Reales. b) Simulación con el Caso Base. Fuente [4].

 

Fasorial (PMU) son idóneas [2], [3], pues una de sus principales ventajas es que reportan hasta 50 o 60 fasores por segundo (FPS, frames per second) [6], lo cual permite capturar la dinámica de los sistemas y, por ende, estimar los parámetros de los modelos de carga dinámicos.

Por otro lado, para representar el comportamiento dinámico de las cargas existen varios modelos. El primero y más conocido es el modelo dinámico de un motor de inducción, sin embargo, este tiene varios parámetros por determinar, además de ser complejo [2], [3]. Como solución, en la literatura se ha planteado el modelo Exponential Recovery load (ERL), el cual es aplicado en escenarios donde la carga se recupera de forma exponencial luego de un cambio repentino en la tensión. Varios estudios como [3], [7], [8] abordan este modelo, sin embargo, tiene como inconveniente que no puede representar el componente oscilatorio de las cargas. Ante esto, en [9] se plantea un nuevo modelo llamado Oscillatory Component Load Model (OCL), el cual es deducido de una ecuación diferencial de segundo orden que contempla tres componentes: uno estático, uno de recuperación exponencial y, uno de oscilaciones amortiguadas, siendo este último el aporte y ventaja de este modelo. Por otro lado, el proceso de identificación paramétrica planteado en [9] se basa en minimizar una función objetivo en base a mínimos cuadrados, que compara las mediciones de potencia reales frente a las mediciones estimadas por el modelo OCL, y se lo resuelve con la técnica de optimización Levenberg-Marquardt.

Con base en lo anterior, y dado que el modelo OCL ha sido estudiando únicamente en [9], se encuentran las siguientes áreas por investigar:


	
		Determinar el mejor algoritmo de optimización para minimizar la función objetivo del proceso de identificación paramétrica del modelo OCL con mediciones sincrofasoriales, pues en la literatura se utilizan varios, como los mostrados en la Tabla 1 [10].

		Establecer las características mínimas recomendables en las mediciones sincrofasoriales para lograr estimar con precisión los parámetros del modelo de carga OCL [10].

		Evaluar el impacto que tiene el ruido de las mediciones sincrofasoriales en la estimación del modelo de carga OCL, pues en [11], [12] se demuestra que el ruido tiene un impacto significativo y negativo en la estimación paramétrica de otros modelos de carga.



Justamente las áreas por investigar mencionadas anteriormente son las que se abordan en este trabajo. En este sentido, para cumplir con estos objetivos, este documento se organiza de la siguiente manera: en la segunda sección se describe el marco teórico; en la tercera sección se presenta la metodología utilizada para evaluar diferentes técnicas de optimización; en la cuarta sección se obtienen los resultados y; en la quinta sección se presentan las conclusiones.


	
		MARCO TEÓRICO




2.1 Modelamiento de Carga



El modelamiento de carga es una tarea que permite determinar un modelo matemático que represente adecuadamente el funcionamiento de las cargas de un sistema eléctrico en diferentes estudios o aplicaciones. El modelamiento de carga abarca dos etapas: la elección de un modelo de carga y, la estimación de los valores de los parámetros del modelo elegido [13]. En este trabajo se aborda al modelo de carga OCL, por lo que se lo define a continuación:


2.1.1 Modelo de carga oscillatory component load (OCL)



El modelo Oscillatory Component Load Model (OCL) se deriva de una ecuación diferencial de segundo orden que considera tres tipos de componentes llamados: estático, recuperación exponencial y oscilaciones amortiguadas. Este modelo ha sido planteado en la literatura en [9], donde las ecuaciones (1) a (3) son para potencia activa, y (4) a (6) para potencia reactiva [9].
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Donde:


	
		y  son constantes que cuantifican la componente estática exponencial.

		 y  son variables de estado correspondiente a la recuperación exponencial.

		 y  son variables de estado correspondiente a la componente oscilatoria. 

		 y  representan las proporciones o pesos de la componente de recuperación exponencial y oscilatoria, respectivamente, para el modelo de potencia activa.

		 y  representan las proporciones o pesos de la componente de recuperación exponencial y oscilatoria, respectivamente, para el modelo de potencia reactiva.

		 y  son constantes de tiempo exponenciales.

		 y  son factores de amortiguamiento.

		 y  es la frecuencia natural.



 


2.1.2 Identificación paramétrica del modelo OCL



La identificación paramétrica es un proceso que determina el valor de los parámetros de un modelo de carga de modo que, cuando se ajustan estos parámetros, los modelos de carga reproducen fielmente el comportamiento real de las cargas.

Para el caso del modelo OCL, la idea es determinar los 6 parámetros que definen el modelo OCL de potencia activa (, , , , , ), mediante la minimización de la función objetivo (7), sujeto a restricciones de límites superior e inferior para estos 6 parámetros. Un proceso análogo se repite para los 6 parámetros que definen el modelo OCL de potencia reactiva.


	
		
				
 


				
(7)


		

	

 

Donde:  es la potencia estimada con el modelo de carga OCL,  es la potencia medida por una PMU, y  es la cantidad de muestras de la serie temporal. Por ejemplo, para 10 segundos de mediciones de una PMU con 60 FPS, .

Los límites superiores () e inferiores () para los seis parámetros del modelo OCL de potencia activa se presentan en (8) y (9), y para el modelo de potencia reactiva en (10) y (11). Estos límites han sido obtenidos de los valores recomendados en [9].
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Donde el orden de los parámetros es: , , , ,  y .


2.2 Métodos de Optimización



Para minimizar una función objetivo, en este caso la mostrada en (7), es necesario aplicar un método de optimización. En este trabajo se compara el desempeño de diez métodos de optimización, los cuales se enlistan en la Tabla 1.

Dado que los métodos de optimización se encuentran ampliamente documentados en la literatura [14] e implementados en programas comerciales o de código abierto como MATLAB y Python, no se los desarrolla en este trabajo. No obstante, es importante mencionar que, de manera general, estos métodos pueden clasificarse en deterministas (tradicionales) y heurísticos o metaheurísticos. Los métodos deterministas pueden garantizar la convergencia al óptimo global únicamente cuando la función objetivo es convexa; en problemas no convexos, su desempeño depende de las condiciones iniciales y pueden converger a óptimos locales. Por su parte, los métodos heurísticos y metaheurísticos no ofrecen garantías formales de optimalidad global, pero emplean estrategias de exploración más amplias que les permiten aproximarse a soluciones cercanas al óptimo global, usualmente con un mayor costo computacional [14]. Los primeros cinco métodos de la Tabla 1 son tradicionales, mientras los restantes son heurísticos.

Tabla 1: Métodos de Optimización. 
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		METODOLOGÍA



La metodología para evaluar diferentes métodos de optimización en la estimación paramétrica del modelo de carga OCL se sintetiza en el diagrama de flujo de la Figura 2. Cada una de las etapas mostradas en esta figura se detallan a continuación:
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Figura 2: Diagrama de Flujo de la Metodología para Evaluar Diferentes Métodos de Optimización en la Estimación Paramétrica del Modelo de Carga OCL.

 


3.1 Generación de Mediciones Sincrofasoriales Sintéticas 



Con el objeto de evaluar las diferentes técnicas de optimización en el proceso de identificación paramétrica del modelo de carga OCL es necesario utilizar un sistema de prueba, de manera que se generen mediciones sincrofasoriales sintéticas de las barras de carga de dicho sistema. Para esto se plantea seguir el siguiente proceso:


	
		Seleccionar un sistema de prueba.

		Configurar las cargas para que su comportamiento sea en base al modelo de carga OCL. 

		Mediante Monte Carlo generar una gran cantidad de escenarios de operación donde varie la demanda del sistema y los parámetros del modelo OCL de carga carga.

		Ejecutar flujos óptimos de potencia.

		Mediante Monte Carlo generar eventos para cada escenario de operación, como variaciones en la carga, cortocircuitos, fallas, cambio en los TAP de los transformadores, entre otros.

		Realizar simulaciones en el dominio fasorial (RMS) para cada uno de estos escenarios.

		Almacenar las simulaciones temporales de tensión, potencia activa y potencia reactiva, de cada una de las barras de carga de dicho sistema, y de manera idéntica a una PMU real, es decir, con una tasa de reporte de 50 o 60 fasores por segundo (FPS, frames per second).

		Con el objeto de que las mediciones sintéticas sean idénticas a las reales, se les añade ruido blanco con los valores de SNR (dB) que se detallan en (12), donde V, P y Q representan la tensión, potencia activa y potencia reactiva, respectivamente [12].
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3.2 Indicadores de Desempeño



Con las mediciones sincrofasoriales sintéticas obtenidas del sistema de prueba se realiza el proceso de identificación paramétrica detallado en la sección 2.1.2, pero se repite con cada uno de los diez métodos de optimización de la Tabla1. Para comparar el desempeño de cada uno de estos algoritmos se utilizan los siguientes indicadores planteados en [10] que se reproducen a continuación.


3.2.1 Tiempo de ejecución



El tiempo de ejecución es el tiempo que tarda un método en encontrar una solución óptima. No incluye tiempos de carga de datos, preprocesamiento, almacenamiento de resultados, ni ningún tiempo que no sea exclusivamente el de minimizar la función objetivo. Los tiempos de ejecución deberían ser inferiores a unas cuantas decenas de segundos, pues hoy en día es una tendencia estimar los parámetros de los modelos de carga continuamente en línea y de forma automática [13].


3.2.2 Cantidad de soluciones viables (CSV)



La CSV es un indicador que calcula, en porcentaje, la cantidad de escenarios en los que cada método de optimización encuentra una solución viable, es decir, que minimice la función objetivo (7) y que cumpla las restricciones presentadas en las ecuaciones (8) a (11).


3.2.3 Error en la estimación de parámetros (EEP)



El EEP es un indicador que cuantifica el error alcanzado al estimar los 6 parámetros del modelo OCL. Para esto se calcula la media del error normalizado de los 6 parámetros, tal como se observa a continuación:
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Donde y  son vectores que contienen los parámetros reales y estimados del modelo de carga. En este caso, para el modelo OCL, y  son vectores de longitud seis, puesto que el modelo OCL se define mediante seis parámetros para el modelo de potencia activa y otros seis parámetros para el de potencia reactiva.

Es importante notar que este indicador EEP no se puede calcular en la práctica ya que no se conocen los parámetros reales, no obstante, el objetivo de este indicador es comparar diferentes métodos de optimización en ambiente de simulación.

 


3.2.4 Error Cuadrático medio estandarizado ()



La Raíz del Error Cuadrático Medio Normalizado es un indicador planteado en [10] y está enfocado específicamente para comparar el desempeño de diferentes métodos de optimización en el modelamiento de carga. Su formulación se presenta en (14).
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Donde:  es la potencia estimada con el modelo de carga OCL,  es la potencia medida por una PMU,  es la cantidad de muestras de la serie temporal y,  es la magnitud de variación de potencia (activa o reactiva) en la serie temporal. La magnitud de variación de potencia () se calcula en pu como la diferencia entre el valor máximo y mínimo que alcanza la potencia en la ventana de tiempo a utilizar. Valga la aclaración, este indicador se calcula para el modelo OCL de potencia activa y para el modelo de potencia reactiva.


3.3 Evaluación del Desempeño de los Métodos de Optimización



En base a los cuatro indicadores precitados se evalúa y compara el desempeño de los métodos de optimización para estimar los parámetros del modelo de carga OCL. Es importante señalar que esta evaluación se realiza al utilizar tres tipos de mediciones: sin ruido, con ruido y, filtradas (señales con ruido más una etapa de filtrado), donde la idea es observar que el desempeño de los métodos de optimización sea adecuado con todos los tipos de señales. Esto se realiza puesto que en [10] se demuestra que algunos métodos de optimización tienen un desempeño sobresaliente al utilizar señales sin ruido, pero muy pobre con señales con ruido, que es como lo son en la vida real.

Por otro lado, los indicadores precitados, salvo el tiempo de ejecución, se recomienda que se evalúen clasificados por magnitud de variación de tensión (), dado que es de importancia observar el desempeño con datos tipo ambiente (mediciones con  menores a 0.03 pu [10]) de PMU, que son los de mayor disponibilidad en un sistema eléctrico real.


3.4 Determinación del Algoritmo de Identificación Paramétrica del Modelo de Carga OCL



Tal como se observa en la Figura 2, y una vez definido el mejor método de optimización para estimar los parámetros del modelo de carga OCL, la última etapa consiste en determinar el algoritmo de identificación paramétrica para este modelo. Para esto es necesario: definir los requisitos mínimos en las mediciones sincrofasoriales, en lo que respecta a la mínima variación de tensión que es necesaria para asegurar con gran probabilidad que los parámetros estimados del modelo OCL son precisos y; los valores de   que indiquen con gran probabilidad que el modelo fue estimado con suficiente precisión.


	
		ANÁLISIS DE RESULTADOS




4.1 Sistema de Prueba



El sistema IEEE de 39 barras que se encuentra implementado en el software de simulación PowerFactory se ha utilizado como sistema de prueba, pero con las siguientes consideraciones: 


	
		Las 19 cargas que conforman el sistema IEEE 39 han sido modificadas para que se comporten bajo el modelo de carga OCL. Dado que el modelo OCL no se encuentra implementado en PowerFactory, este ha sido programado en DSL (DIgSILENT Simulation Language).

		Con programación DPL (DIgSILENT Programming Language) se han generado once mil diferentes escenarios de operación, en donde los parámetros de los modelos OCL varían aleatoriamente de acuerdo con los valores recomendados en [9] y sintetizados en las ecuaciones (8) a (11). En cuanto a la demanda de las cargas, esta se genera aleatoriamente para cada uno de los once mil escenarios con base en tres curvas de demanda: residencial, comercial e industrial. El proceso es: se selecciona aleatoriamente una hora del día, se obtiene el valor de demanda a esa hora de una de las tres curvas precitadas, se corre un flujo óptimo de potencia y, se obtiene como resultado el despacho de cada generador.

		Posterior a lo anterior, se asigna de forma aleatoria una de las siguientes contingencias a cada escenario de operación: cambio repentino de la carga con valor aleatorio; salida aleatoria de un generador; o, cortocircuito en una línea de transmisión con ubicación aleatoria.

		Se realizan simulaciones dinámicas del tipo fasorial (RMS), con una duración de 10 segundos, para cada uno de los once mil escenarios precitados. 

		Se almacenan en archivos planos a la tensión, potencia activa y potencia reactiva, de cada una de las 19 cargas que conforman el sistema IEEE 39. La tasa de muestreo es de 60 FPS, de manera que sea idénticas a las obtenidas con una PMU.



Con base en lo anterior, se han simulado los escenarios de operación y se han almacenado las mediciones sincrofasoriales sintéticas, con una cantidad de escenarios clasificados por magnitud de variación de tensión como se muestra en la Figura 3. La cantidad mínima de escenarios se da entre ΔV de 0.17 y 0.18, con 107 escenarios. Con el objeto de que posteriormente no se obtengan resultado sesgados por la diferencia sustancial de cantidad de escenarios, se limita a 107 escenarios para cada ΔV mostrado en la Figura 3, obteniendo un total de  escenarios.
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Figura 3: Cantidad de Escenarios Clasificados por Magnitud de Variación de Tensión.

 


4.2 Evaluación del Desempeño de los Métodos de Optimización



Con los cuatro indicadores precitados se evalúa y compara el desempeño de los métodos de optimización de la Tabla 1 para estimar los parámetros del modelo de carga OCL.


4.2.1 Tiempo de ejecución



En la Figura 4 se presenta el tiempo de ejecución al estimar el modelo OCL de potencia reactiva y al utilizar las mediciones sincrofasoriales filtradas. Los tiempos para potencia activa o al utilizar señales sin ruido son idénticos. Hay diez diagramas de cajas correspondientes a los diez métodos de optimización, en el mismo orden de los listados en la Tabla 1. La presentación es en diagramas de cajas puesto que se calcula el tiempo de ejecución para los  escenarios precitados del sistema de prueba.

Al observar la Figura 4 se concluye que los tiempos de ejecución son pequeños, salvo para el método 7. Genetic algorithm, lo cual significa que son adecuados para las metodologías de modelamiento de carga automáticas y en línea actuales.

[image: Image]

Figura 4: Tiempo de Ejecución de los 10 Algoritmos de Optimización de la Tabla 1. 

 


4.2.2 Cantidad de soluciones viables (CSV)



La CSV que alcanza cada uno de los diez métodos de optimización, clasificados por magnitud de variación de tensión (), se presenta en la Figura 5. Este CSV corresponde a la estimación de los modelos OCL de potencia activa, sin embargo, valores muy similares se alcanzan para la potencia reactiva. En la Figura 5 a) se utilizan mediciones sincrofasoriales sin ruido, mientras en la Figura 5 b) señales con ruido más una etapa de filtrado.

[image: Image]

Figura 5: Cantidad de Soluciones Viables del Modelo OCL de Potencia Activa. a) Sin Ruido. b) Con Ruido + Filtro.

 

Al analizar la Figura 5 a), con mediciones sin ruido, se observa que los métodos de optimización tradicionales Trust-region-reflective, Levenberg-marquardt e Interior-point alcanzan un desempeño bastante alto, pues sus CSV alcanzan porcentajes elevados. Por el contrario, al utilizar señales filtradas, Figura 5 b), que es como son en la vida real, estos métodos reducen considerablemente su desempeño, con CSV bastante bajos, sobre todo para pequeños .

Al considerar que es una tendencia actual estimar los modelos de carga con datos tipo ambiente (mediciones con  menores a 0.03 pu [10]) de PMU, debido a que son las de mayor disponibilidad, y que las mediciones sincrofasoriales contienen ruido que se lo filtra, se concluye a partir de la Figura 5 b) que el método Active-set es el mejor, con un desempeño muy superior a los otros métodos. Es importante resaltar que este hallazgo es un aporte al estado del arte, pues el único trabajo que investiga la identificación paramétrica del modelo OCL [9] utiliza el método Levenberg-Marquardt, además de que, en este trabajo se demuestra que no es necesario utilizar métodos heurísticos, como se viene proponiendo actualmente en la literatura para el modelamiento de carga.


4.2.3 Error cuadrático medio estandarizado ()



En la Figura 6 se presentan los  alcanzados, clasificados por magnitud de variación de tensión (), al estimar los modelos de carga OCL de potencia reactiva y al utilizar señales con ruido. Valores de  similares se obtienen para el modelo OCL de potencia activa, y valores iguales o inferiors al utilizar señales sin ruido o filtradas.

Al analizar los valores de la Figura 6 se concluye que, los diez métodos de optimización alcanzan valores adecuados de , pues sus valores son inferiors a 0.05, de acuerdo con los límites razonables recomendados en [10]. A pesar de lo anterior, los métodos heurísticos Simulated annealing y Differential evolution alcanzan valores de sustancialmente más altos que los otros métodos.

Finalmente, con base en la Figura 6, no se puede seleccionar el método de optimización más adecuado para esta aplicación.
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Figura 6: Media del  con Mediciones con Ruido + Filtro.

 


4.2.4 Error en la estimación de parámetros (EEP)



En la Figura 7 se presenta el EEP alcanzado al estimar los modelos OCL de potencia activa, con señales sin ruido y con señales con ruido + filtro. Valores muy similares de EEP se obtienen para el modelo OCL de potencia reactiva.

En este indicador y en la Figura 7 es muy importante diferenciar los EEP alcanzados cuando se utilizan señales sin ruido o señales con ruido + filtro. Al analizar la Figura 7 se observa que los métodos Trust-region-reflective y Levenberg-marquardt alcanzan EEP de prácticamente cero con señales sin ruido, lo que quiere decir que su desempeño es ideal. Por el contrario, cuando se utilizan señales con ruido + filtro, que es como sucede en la vida real, el desempeño de estos dos métodos cae drásticamente y es inferior al de otros métodos. Este es un aporte a la literatura, pues demuestra que el método Levenberg-marquardt, que es el más utilizado en el modelamiento de carga, no es recomendable. Además, este particular concuerda con lo investigado en [10] para otro modelo de carga.
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Figura 7: EEP para el Modelo OCL de Potencia Reactiva. a) Sin Ruido. b) Con Ruido + Filtro.

 

Desde una perspectiva teórica, el mejor desempeño del algoritmo Active-set frente al ruido puede atribuirse a su capacidad para gestionar de manera explícita el conjunto de restricciones activas durante el proceso iterativo. A diferencia de los métodos basados en gradientes de segundo orden, que dependen fuertemente de la curvatura local de la función objetivo y de la estabilidad del Hessiano —ambos susceptibles a perturbaciones inducidas por ruido en los datos de entrada—, el enfoque Active-set desacopla la identificación de las restricciones activas del cálculo de la dirección de búsqueda. Esta característica le permite mantener la factibilidad del problema incluso cuando las derivadas de primer y segundo orden se ven afectadas, reduciendo así la probabilidad de converger hacia soluciones inestables o inconsistentes. Adicionalmente, al resolver subproblemas cuadráticos con restricciones en cada iteración, el algoritmo introduce una capa de control estructural que limita la propagación del ruido hacia la solución final, lo que se traduce en una mayor robustez en contextos donde las mediciones presentan fluctuaciones o imprecisiones inherentes, como lo es el ruido.


4.3 Algoritmo de Identificación Paramétrica del Modelo de Carga OCL



De la sección anterior se concluye que el método de optimización más adecuado para estimar los parámetros del modelo de carga OCL es Active-set.

Una vez determinado el mejor método, el siguiente y último paso es definir el algoritmo de identificación paramétrica del modelo OCL. Para esto es necesario determinar dos aspectos.

El primero es la magnitud de variación de tensión () mínima requerida para estimar con suficiente precisión el modelo OCL. Esto se puede determinar al observar la Figura 5 b) para el método de optimización Active-set. Al analizar esta Figura 5 b) se observa que para  el CSV es al menos de 50%, lo que quiere decir que, con  se puede estimar los modelos de carga al menos en el 50% de escenarios.

Una vez definido el  mínimo, el siguiente aspecto por determinar es el valor de  que indique con cierta probabilidad que el EEP alcanzado es bajo. Esto se da porque en el mundo real no se puede calcular el EEP, sino el . Para esto, en la Figura 8 se presenta la relación entre el  y el EEP. Al analizar la Figura 8 se concluye que un valor de indica con alrededor del 75% de probabilidad que el EEP es menor a 15.

Con base en todo lo anterior, el algoritmo planteado de identificación paramétrica del modelo OCL es el siguiente:


	
		Se reciben 10 segundos de mediciones sincrofasoriales de una barra de carga.

		Se filtran las señales con alguna técnica de filtrado o suavizado de datos.

		Se comprueba que la magnitud de variación de tensión () sea superior a 0.005 pu. De no ser así, se detiene el algoritmo y se regresa al primer paso.

		Se ejecuta el proceso de identificación paramétrica definido en la sección 2.1.2 con el método de optimización Active-set.

		Se calcula el indicador  y se comprueba que sea menor o igual a 0.02. De serlo, se intuye que el modelo de carga ha sido estimado de forma correcta, caso contrario, se dice que el modelo de carga estimado es impreciso.

		Se inicia de nuevo este algoritmo, esperando una nueva serie temporal de mediciones sincrofasoriales.
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Figura 8:  vs EEP para el Método de Optimización Active-set

 

Finalmente, para utilizar el algoritmo planteado en este trabajo se debe tener en cuenta las siguientes consideraciones:


	
		Disponer de mediciones sincrofasoriales de una barra de carga de un sistema eléctrico con una tasa de reporte elevada que permita capturar la dinámica de las cargas.

		Utilizar alguna metodología que determine el tipo de modelo de carga que representa el comportamiento de dicha barra de carga. En el caso de que corresponda al modelo de carga OCL, se procede a utilizar el algoritmo planteado en este trabajo. 



	
		CONCLUSIONES Y TRABAJOS FUTUROS



En este trabajo se realizó un análisis exhaustivo de diez métodos de optimización para estimar los parámetros de los modelos de carga OCL. Este modelo ha sido estudiado solamente en [9], por lo que se realizan los siguientes aportes a la literatura:


	
		Cuando se analizan los métodos de optimización con señales sin ruido los métodos Trust-region-reflective y Levenberg-marquardt tienen un desempeño ideal y muy superior a los otros métodos, sin embargo, cuando las señales tienen ruido, y su correspondiente técnica de filtrado, el desempeño de estos métodos cae drásticamente. Dado que en la práctica las señales de las PMU tienen ruido, no se recomienda utilizar estos métodos, como se lo utiliza en [9]. 

		Los métodos de optimización heurísticos, que son una tendencia actual, presentan un desempeño inferior a los métodos tradicionales, por lo tanto, no hace falta utilizarlos en la estimación de los modelos de carga OCL. 

		Los tiempos de ejecución de los diez métodos de optimización evaluados en este trabajo son adecuados para metodologías de modelamiento de carga en línea, salvo el método Genetic algorithm.

		Para estimar los parámetros del modelo de carga OCL se recomienda utilizar mediciones sincrofasoriales que contengan una magnitud de variación de tensión de al menos 0.005 pu. Este valor es importante ya que cuantifica la variación mínima necesaria en datos tipo ambiente de PMU para estimar el modelo OCL.

		Por último, otro aporte de este trabajo es la determinación del valor límite del indicador . Un valor igual o inferior a 0.02 pu indica con alrededor del 75% de probabilidad que el modelo ha sido estimado con suficiente precisión.



Como trabajos futuros se plantea evaluar el algoritmo planteado en este trabajo con mediciones sincrofasoriales obtenidas por PMU ubicadas en sistemas eléctricos reales.
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