Modelos de Predicción de Radiación Solar y Temperatura Ambiente mediante Redes Neuronales Recurrentes
Forecasting Models of Solar Radiation and Air Temperature through Recurrent Neural Network
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- Marlon Chamba, Walter Vargas, Jaime Cepeda, Evaluación probabilística de la estabilidad transitoria considerando la incertidumbre de la demanda y gestión del riesgo , Revista Técnica "energía": Vol. 15 Núm. 1 (2018): Revista Técnica "energía", Edición No. 15
- Luis Pazmiño, Diego Echeverría, Jaime Cepeda, Análisis de transitorios electromagnéticos en el Sistema Nacional Interconectado (S.N.I.) a nivel de 230 kV y 500 kV usando el simulador digital en tiempo real HYPERsim , Revista Técnica "energía": Vol. 15 Núm. 1 (2018): Revista Técnica "energía", Edición No. 15
- Boris German, Karolina Toapanta, Sebastián Espinoza, Ricardo Narváez, Edward Jiménez , Andrés Chico, Optimización de Centros de Almacenamiento de Jatropha Curcas en Manabí Ecuador , Revista Técnica "energía": Vol. 15 Núm. 1 (2018): Revista Técnica "energía", Edición No. 15
- Byron Chiguano, Juan Ramírez, Franklin Quilumba, Carlos Gallardo, Estimación de los Parámetros Eléctricos de un Generador Sincrónico basada en Mediciones de Laboratorio usando Métodos de Optimización No Lineal , Revista Técnica "energía": Vol. 15 Núm. 1 (2018): Revista Técnica "energía", Edición No. 15
- Jaime Cepeda, Santiago Chamba, Determinación del Modelo Estocástico del Estado de Carga de Baterías para el cómputo de Flujo de Potencia Probabilístico de Microrredes , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
- A. Ríos, D. Taipe, Manuel Otorongo, J. Guamán, Diseño e Implementación de una Plataforma CloudIoT de Control Inteligente de un Sistema de Iluminación Interior con Suministro en LVDC. , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
- O. Pineda, S. Espinel , M. Ruiz, Diseño e Implementación de un Sistema de Gestión de Energía Enfocado en el Control de Equipos y Luminarias , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
- Diego Jiménez, Xavier Proaño, Diseño de un Sistema de Alumbrado LED a través de Energía Fotovoltaica para Brindar Niveles de Calidad de Iluminación en el Parqueadero N° 1 de la Universidad Técnica de Cotopaxi , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- Paúl Potes, Xavier Proaño, Diseño de un Sistema Fotovoltaico Conectado a la Red en el Bloque B de la Universidad Técnica de Cotopaxi , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- Christian Ortiz, Gabriel Salazar, Metodología para la Planificación y Control de la Ejecución de Mantenimientos Preventivos y Correctivos de Líneas de Subtransmisión , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
Artículos más leídos del mismo autor/a
- Jessica Constante, Alejandro Cuesta, Diego Jijón, Métodos de ajuste de Weibull de dos parámetros en series de viento y estimación del Potencial Eolo-eléctrico. , Revista Técnica "energía": Vol. 17 Núm. 2 (2021): Revista Técnica "energía", Edición No. 17, ISSUE II
- Diego Jijón, Jessica Constante, Geovanna Villacreses, Tania Guerrero, Estimación del rendimiento de aerogeneradores de 2 MW en el Ecuador: Potencial Eolo-Eléctrico , Revista Técnica "energía": Vol. 15 Núm. 1 (2018): Revista Técnica "energía", Edición No. 15
El objetivo de este estudio es comparar dos arquitecturas de redes neuronales recurrentes de Elman y Jordan (RNRE y RNRJ), enfocadas en predicción de dos días de radiación solar y temperatura ambiente. Las entradas del modelo de predicción son variables meteorológicas como velocidad del viento, presión atmosférica, humedad relativa y precipitación. El Instituto de Investigación Geológico y Energético proveyó los datos de tres estaciones meteorológicas situadas en las Provincias de Pichincha y Tungurahua para las etapas de entrenamiento, validación y predicción de las redes. Cada red se entrenó con tres funciones de aprendizaje, retropropagación, retropropagación de momento y retropropagación resiliente. Los resultados muestran los parámetros estadísticos de correlación de Pearson, error cuadrático medio y el comportamiento de la predicción sobre gráficas de temperatura del aire y radiación solar, de acuerdo a los modelos de RNRE y RNRJ. Este trabajo presenta coeficientes de correlación superiores a 0,9 en la etapa de validación. En la etapa de predicción, el coeficiente de correlación es superior a 0,8 y el error cuadrático medio muestra valores inferiores a 0,02 kW de radiación solar y 2 ºC de temperatura ambiente.
Visitas del artículo 1554 | Visitas PDF 775
Descargas
- H. Sharadga, S. Hajimirza, and R. S. Balog, “Time series forecasting of solar power generation for large-scale photovoltaic plants,” Renew. Energy, vol. 150, pp. 797–807, 2020, doi: 10.1016/j.renene.2019.12.131.
- A. Alzahrani, P. Shamsi, C. Dagli, and M. Ferdowsi, “Solar Irradiance Forecasting Using Deep Neural Networks,” in Procedia Computer Science, 2017, vol. 114, pp. 304–313, doi: 10.1016/j.procs.2017.09.045.
- G. Mahalakshmi, S. Sridevi, and S. Rajaram, “A Survey on Forecasting of Time Series Data,” p. 8, 2016.
- V. O. Nur Laily, B. Warsito, and D. A. I Maruddani, “Comparison of ARCH / GARCH model and Elman Recurrent Neural Network on data return of closing price stock,” J. Phys. Conf. Ser., vol. 1025, no. 1, 2018, doi: 10.1088/1742-6596/1025/1/012103.
- M. Bettiza, “An Analysis on Wind Speed Forecasting Result with the Elman Recurrent Neural Network Method,” E3S Web Conf., vol. 324, p. 4, 2021, doi: 10.1051/e3sconf/202132405002.
- A. A. Fierro, “Predicción de Series Temporales con Redes Neuronales,” Fac. Informática Univ. Nac. La Plata Argentina, p. 64, 2020.
- W. M. Septiawan and S. N. Endah, “Suitable Recurrent Neural Network for Air Quality Prediction with Backpropagation Through Time,” 2018 2nd Int. Conf. Informatics Comput. Sci. ICICoS 2018, pp. 196–201, 2018, doi: 10.1109/ICICOS.2018.8621720.
- T. E. Putri, A. A. Firdaus, and W. I. Sabilla, “Short-Term Forecasting of Electricity Consumption Revenue on Java-Bali Electricity System using Jordan Recurrent Neural Network,” J. Inf. Syst. Eng. Bus. Intell., vol. 4, no. 2, p. 96, 2018, doi: 10.20473/jisebi.4.2.96-105.
- J.Durán, “Redes Neuronales Convolucionales en R Reconocimiento de caracteres escritos a mano,” p. 78, 2018, [Online]. Available: http://bibing.us.es/proyectos/abreproy/91338/fichero/TFG+Jaime+Durán+Suárez.pdf.
- D. D. Cervantes, “Estudio De Las Emisiones De Nox Mediante Redes Neuronales Recurrentes,” 2020.
- M. Cabezón, “Implementación de redes neuronales recurrentes en Python . Miguel Cabezón Manchado Trabajo de fin de máster en Ingeniería Matemática,” p. 43, 2018, [Online]. Available: https://eprints.ucm.es/49444/1/2018-MIGUEL CABEZON Memoria.pdf.
- F. Rodríguez, A. Fleetwood, A. Galarza, and L. Fontán, “Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control,” Renew. Energy, vol. 126, pp. 855–864, 2018, doi: 10.1016/j.renene.2018.03.070.
- B. Kamanditya and B. Kusumoputro, “Elman Recurrent Neural Networks Based Direct Inverse Control for Quadrotor Attitude and Altitude Control,” in Proceedings of International Conference on Intelligent Engineering and Management, ICIEM 2020, 2020, pp. 39–43, doi: 10.1109/ICIEM48762.2020.9160191.
- C. Arana, “Redes Neuronales Recurrentes: Análisis De Los Modelos Especializados En Datos Secuenciales,” Univ. del Cema, no. 797, pp. 4–8, 2021, [Online]. Available: https://ucema.edu.ar/publicaciones/download/documentos/797.pdf.
- S. Alemany, J. Beltran, A. Perez, and S. Ganzfried, “Predicting hurricane trajectories using a recurrent neural network,” 33rd AAAI Conf. Artif. Intell. AAAI 2019, 31st Innov. Appl. Artif. Intell. Conf. IAAI 2019 9th AAAI Symp. Educ. Adv. Artif. Intell. EAAI 2019, pp. 468–475, 2019, doi: 10.1609/aaai.v33i01.3301468.
- M. M. Rahman et al., “Prospective methodologies in hybrid renewable energy systems for energy prediction using artificial neural networks,” Sustain., vol. 13, no. 4, pp. 1–28, 2021, doi: 10.3390/su13042393.
- M. Abreu and L. Villas, Minería de datos para Series Temporales, no. August. Universidad Central “Martha Abreu” de las Villas, 2015.
- M. Christoph Bergmeir, “Neural networks using the stuttgart neural network simulator (SNNS),” pp. 1–74, 2021, [Online]. Available: https://github.com/cbergmeir/RSNNS/issues.
- E. Andrade, “Estudio de los principales tipos de redes neuronales y las herramientas para su aplicación,” p. 152, 2013, [Online]. Available: http://dspace.ups.edu.ec/handle/123456789/4098.
- A.Zell et al., “Stuttgart Neural Network Simulator SNNS,” Univ. Tübingen, pp. 1–350, 2016, [Online]. Available: papers2://publication/uuid/1C682FBB-1EEB-4D5E-AB83-EE9F7D055829.
- D. M. Polo, L. P. Caballero, and E. M. Gómez, “Comparación de Redes Neuronales aplicadas a la predicción de Series de Tiempo,” Prospectiva, vol. 13, no. 2, pp. 88–95, 2015.
- J. A. Cárdenas Garro, “‘Pronósticos Y Comparación De Una Serie De Tiempo Con Cambios Estructurales Mediante La Red Neuronal Artificial De Retropropagación Resiliente Y Modelos No Lineales,’” Univ. Nac. Mayor San Marcos - Fac. Ciencias Mat. Esc. Prof. Estadística, 2015.
- M. De Liu, L. Ding, and Y. L. Bai, “Application of hybrid model based on empirical mode decomposition, novel recurrent neural networks and the ARIMA to wind speed prediction,” Energy Convers. Manag., vol. 233, p. 113917, 2021, doi: 10.1016/j.enconman.2021.113917.
- L. Hardinata, B. Warsito, and Suparti, “Bankruptcy prediction based on financial ratios using Jordan Recurrent Neural Networks: A case study in Polish companies,” J. Phys. Conf. Ser., vol. 1025, no. 1, 2018, doi: 10.1088/1742-6596/1025/1/012098.
- A. F. Romero Granda, “Predicción de la potencia activa a corto plazo de un parque fotovoltaico utilizando una red neuronal artificial,” ESCUELA POLITÉCNICA NACIONAL, 2017.








