Análisis de Variables Temporales para la Predicción del Consumo Eléctrico
Análisis de Variables Temporales para la Predicción del Consumo Eléctrico
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- Wilson Vásquez, Evaluación del Factor de Potencia en Usuarios con Equipos de Generación para Autoabastecimiento , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Johnny Heredia, Edy Ayala , Diseño de Sistema para la Generación de Mantenimiento Predictivo Basado en IoT e Inteligencia Artificial para Talleres de Mecánica Exprés , Revista Técnica "energía": Vol. 21 Núm. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
- Catalina Vallejo, Luis Godoy, Francis Vásquez, Geovanna Villacreses, Marco Orozco, Santiago Navarro, Estrategias para Mejorar la Eficiencia Energética en Edificios de servicios públicos, en una Zona Climática Calurosa y Húmeda: Caso de Estudio en Guayaquil, Ecuador , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- HOLGUER VINICIO YUGLA LEMA, Sintonización de los Parámetros de un D-Statcom para la Estabilidad de Voltaje con Presencia de Generación Distribuida , Revista Técnica "energía": Vol. 21 Núm. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
- Karina Tituana, Vanessa Guillén, Análisis de Percepción del Confort Térmico de Edificaciones Residenciales en la Ciudad de Loja basado en la Norma Ecuatoriana de Eficiencia Energética , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Marco Rosero, Morayma Muñoz, Jessenia Ayala, Angela García, Antonio Marcilla, Carla Zambonino, Najhely García, Evaluación de la Capacidad de Almacenamiento de Energía del Material Lignocelulósico de Cacao , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Kleber Zhañay, Cristian Leiva, Erika Pilataxi, William Quitiaquez, Modelo de Correlación Desgaste - Cantidad de Sedimentos para la Programación de Mantenimiento Preventivo de una central Hidroeléctrica , Revista Técnica "energía": Vol. 21 Núm. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
- Morayma Muñoz, Napoleón Padilla, Grace Morillo, Marco Rosero, Electrocoagulación como Alternativa Sostenible para el Tratamiento de Efluentes de Refinería: Aplicación en Refinería Esmeraldas , Revista Técnica "energía": Vol. 22 Núm. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- William Quitiaquez, Andrés Argüello, Isaac Simbaña, Patricio Quitiaquez, Evaluación del Comportamiento de Motores a Gasolina Mediante Simulación del Flujo de Aire a Través del Cuerpo de Aceleración , Revista Técnica "energía": Vol. 20 Núm. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- Andrés Jacho, Diego Echeverría, Santiago Chamba, Carlos Lozada, Wilson Sánchez, Aplicación del Control Formador de Red en Microrredes con Sistemas de Almacenamiento de Energía para la Regulación Primaria de Frecuencia, Caso de Estudio: Islas Galápagos , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
El problema de la predicción de consumo eléctrico a corto plazo o Short Term Load Forecasting (STLF), es un tema de capital importancia para las empresas de energía en la actualidad, ya que permite un manejo más eficiente, permitiendo un mejor aprovechamiento de los equipos y recursos. La predicción de la demanda es un problema complejo, ya que está relacionada a factores económicos, climáticos, temporales, y su comportamiento varía de una sociedad a otra. Cada uno de estos factores aporta determinadas variables que pueden ser representadas de diferentes maneras, en particular las temporales. Se plantea en este trabajo la hipótesis que el método utilizado para presentar las variables temporales a un sistema de predicción de consumo eléctrico afecta los resultados. Para verificar la hipótesis planteada, consideramos diferentes métodos de representación de estas variables, aplicados al problema de predicción de valores diarios de consumo eléctrico en la provincia de Tucumán, Argentina. La división de la variable temporal en variables día, día de la semana, mes y año en forma individual para cada periodo involucrado en el problema, resultó ser el método más conveniente, obteniendo una mejora de hasta el 10,56% respecto de otros métodos considerados.
Visitas del artículo 790 | Visitas PDF 237








