Pronóstico de Demanda para Sistemas de Suministro de Energía Eléctrica Utilizando Algoritmos Evolutivos y Razonamiento Inductivo Fuzzy – Desarrollo de la Plataforma Gráfica Merlyn
Pronóstico de Demanda para Sistemas de Suministro de Energía Eléctrica Utilizando Algoritmos Evolutivos y Razonamiento Inductivo Fuzzy – Desarrollo de la Plataforma Gráfica Merlyn
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- Walter Vargas, Pablo Verdugo, Validación e Identificación de Modelos de Centrales de Generación Empleando Registros de Perturbaciones de Unidades de Medición Fasorial, Aplicación Práctica Central Paute - Molino , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- Luis Paredes, Benjamín Serrano, Marcelo Molina , Mejoramiento de la Estabilidad de Tensión con un DSTATCOM en una Microrred Integrada por GD Solar Fotovoltaica y Convencional , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- Rodolfo Rosés, Dario Carestía, Guillermo Gizzi, Implementación de Aplicaciones EMS en un Sistema de Subtransmisión , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- A. Ríos, D. Taipe, Manuel Otorongo, J. Guamán, Diseño e Implementación de una Plataforma CloudIoT de Control Inteligente de un Sistema de Iluminación Interior con Suministro en LVDC. , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
- O. Pineda, S. Espinel , M. Ruiz, Diseño e Implementación de un Sistema de Gestión de Energía Enfocado en el Control de Equipos y Luminarias , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
- Cristian Fabara, Diego Maldonado, Mauricio Soria, Antonio Tovar, Predicción de la Generación para un Sistema Fotovoltaico mediante la aplicación de técnicas de Minería de Datos , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
- W. Quitiaquez, A. Simbaña, I. Simbaña, C. Isaza, C. Nieto, P. Quitiaquez, F. Toapanta, Análisis Comparativo entre el Aceite Mineral y el Aceite Vegetal Utilizados como Dieléctricos y Refrigerantes para Transformadores de Potencia , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
- Javier Martínez , Mario Bustamante , Paolo Salazar , José Macias , A. P. Lobato, Ricardo Narváez , Martin Cordovez , Caracterización Térmica y Mecánica de la Madera de Roble , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
- L.A. Paredes, Electromovilidad y Eficiencia Energética en el Transporte Público de Pasajeros del Ecuador Continental , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
- S. Quishpe, M. Padilla, M. Ruiz, Despliegue Óptimo de Redes Inalámbricas para Medición Inteligente , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
Artículos más leídos del mismo autor/a
- Gabriel Salazar, Víctor Hinojosa, Licitaciones de Energía Eléctrica y Teoría de Subastas , Revista Técnica "energía": Vol. 3 Núm. 1 (2007): Revista Técnica "energía", Edición No. 3
- Víctor Hinojosa, Lorena Herrera, Pronóstico de Demanda de Muy Corto Plazo Utilizando Razonamiento Inductivo Fuzzy y Algoritmos Evolutivos , Revista Técnica "energía": Vol. 4 Núm. 1 (2008): Revista Técnica "energía", Edición No. 4
- Víctor Hinojosa, Wladimir Llanos, Pronóstico de Demanda para Sistemas de Suministro de Energía Eléctrica Utilizando Algoritmos Evolutivos y Razonamiento Inductivo Fuzzy – Desarrollo de la Plataforma Gráfica Merlyn - 2008 , Revista Técnica "energía": Vol. 4 Núm. 1 (2008): Revista Técnica "energía", Edición No. 4
En este trabajo se muestra el problema del Pronóstico de Demanda que es necesario para la Planificación de la Operación de corto plazo (horizonte semanal y diario) y muy corto plazo (horizonte diario) en los Sistemas de Suministro de Energía Eléctrica (SSEE). Los modelos y algoritmos desarrollados consideran las incertidumbres asociadas, principalmente a variables climáticas como la temperatura, debido a la correlación que tiene en el corto plazo con la demanda de un Sistema Eléctrico. Los principales puntos que se resuelven en este trabajo: 1. Consideración de un modelo de pronóstico no lineal, basado en Inteligencia Artificial, 2. Planteamiento de un Modelo Multivariable sin necesidad de complejas modelaciones, 3. Obtención de un Modelo Único de Pronóstico válido para distintos horizontes de pronóstico; y, 4. Determinación óptima de las entradas al Modelo de Pronóstico.
Visitas del artículo 506 | Visitas PDF 267








