Minería de Datos para Reconocimiento de Patrones en el Análisis de Seguridad Estática de Sistemas de Potencia ante Eventos de Contingencia
Data Mining for Patterns Recognition of Power Systems Static Security Assessment with Contingency Events
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- Gabriel Rivera, Análisis Comparativo de las Funciones de Estimación de Estado de los Sistemas Spider y Network Manager de la Corporación Centro Nacional de Control de Energía , Revista Técnica "energía": Vol. 2 Núm. 1 (2006): Revista Técnica "energía", Edición No. 2
- Marlon Chamba, Walter Vargas, Jaime Cepeda, Evaluación probabilística de la estabilidad transitoria considerando la incertidumbre de la demanda y gestión del riesgo , Revista Técnica "energía": Vol. 15 Núm. 1 (2018): Revista Técnica "energía", Edición No. 15
- A. R. Guamán, P. M. Pozo, I. A. Pozo, N. A. Pozo, Diseño e Implementación de una (PMU) de baja potencia para Sistemas Trifásicos de Distribución bajo la norma IEEE C37.118.1 , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
- Estefanía Alexandra Tapia, D.G. Colomé, Mitigación de la Recuperación Retardada de Tensión Inducida por Falla mediante Desconexión de Carga basada en el Comportamiento Dinámico de la Carga , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
- Luis Paredes, Benjamín Serrano, Marcelo Molina , Mejoramiento de la Estabilidad de Tensión con un DSTATCOM en una Microrred Integrada por GD Solar Fotovoltaica y Convencional , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- Walter Vargas, Pablo Verdugo, Validación e Identificación de Modelos de Centrales de Generación Empleando Registros de Perturbaciones de Unidades de Medición Fasorial, Aplicación Práctica Central Paute - Molino , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- Christian Gutierrez, Joseph Venegas, Análisis Nodal para determinar el punto óptimo de operación entre producción de petróleo y producción de GLP, maximizando el recurso energético de la Estación de producción de Petróleo, Aguarico , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- Juan Taco, Luis Tipán, Metodología para la determinación de indicadores de Eficiencia Eléctrica en la Zona Residencial , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- Luis Paredes, Marcelo Pozo, Movilidad Eléctrica y Eficiencia Energética en el Sistema de Transporte Público del Ecuador un Mecanismo para Reducir Emisiones de CO2 , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- Juan Giraldo, Juan Pablo Arango, Proceso de optimización en el diseño de sistema de calefacción solar pasivo , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
Artículos más leídos del mismo autor/a
- Cristian Fabara, Diego Maldonado, Mauricio Soria, Antonio Tovar, Predicción de la Generación para un Sistema Fotovoltaico mediante la aplicación de técnicas de Minería de Datos , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
El presente artículo busca analizar la seguridad estática del sistema, aplicando técnicas avanzadas de minería de datos que permitan evaluar los patrones de seguridad de un sistema eléctrico de potencia en un análisis de estado estacionario ante eventos de contingencia N-1. Los datos son obtenidos a través de flujos de potencia, para efectuar simulaciones de Monte Carlo con scripts desarrollados en Python. Usando el software de simulación DIgSILENT PowerFactory se analizan 10000 escenarios, lo que permite considerar la incertidumbre del sistema según la naturaleza probabilística del mismo. Se calculan los índices de seguridad estática del sistema para clasificar los tipos de contingencias como segura, críticamente segura, insegura y altamente insegura. La minería de datos es desarrollada mediante un algoritmo programado en lenguaje Python con el cual se realiza el diseño del clasificador tipo máquina de soporte vectorial multiclase (SVM Multiclass) el cual es entrenado para determinar si una contingencia es segura o insegura. Los parámetros del SVM fueron obtenidos mediante una optimización con un algoritmo de evolución diferencial (Differential Evolution). Los resultados de la validación del clasificador demostraron que la técnica es muy efectiva para clasificar nuevas contingencias. La metodología se aplica a un sistema de prueba IEEE de 39 barras.
Visitas del artículo 1066 | Visitas PDF 401








