Estrategia de control robusto descentralizado para una micro-red aislada con generación distribuida acoplada para mejorar la estabilidad de voltaje.

Contenido principal del artículo

Wilson Pavón
https://orcid.org/0000-0002-9319-8815
Sandra Gualotuña

Resumen

El paper presenta una novedosa estrategia de control de Micro-redes aisladas, basado en el control jerárquico y control droop modificado. Esta estrategia robusta permite mejorar la estabilidad de voltaje y su comportamiento transitorio.


Se implementa una Micro-red de referencia con dos fuentes fotovoltaicas con valores nominales. Lo que permite verificar el desempeño de la estrategia propuesta comparando con un controlador PI convencional. El constante avance de la tecnología requiere una gran cantidad de energía, por ello se ha propuesto la inclusión de fuentes de energía renovable (RES) cerca de los centros de carga.  Estas RES son implementadas también en sectores donde el sistema eléctrico convencional no es capaz de llegar, de esta manera se garantiza el abastecimiento de energía eléctrica a toda la población. Sin embargo, la implementación de estos nuevos sistemas implica retos de control para que su funcionamiento sea correcto, indiferente que la Micro-red funcione de forma conectada o aislada a la red convencional.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Pavón, W., & Gualotuña, S. (2024). Estrategia de control robusto descentralizado para una micro-red aislada con generación distribuida acoplada para mejorar la estabilidad de voltaje. Revista Técnica "energía", 20(2), PP. 58–71. https://doi.org/10.37116/revistaenergia.v20.n2.2024.604
Sección
SISTEMAS ELÉCTRICOS DE POTENCIA

Citas

S. Sen and V. Kumar, “Microgrid modelling: A comprehensive survey,” Annu. Rev. Control, vol. 46, no. xxxx, pp. 216–250, 2018, doi: 10.1016/j.arcontrol.2018.10.010.

J. C. Vasquez, J. M. Guerrero, M. Savaghebi, and R. Teodorescu, “Modeling, analysis, and design of stationary reference frame droop controlled parallel three-phase voltage source inverters,” 8th Int. Conf. Power Electron. - ECCE Asia "Green World with Power Electron. ICPE 2011-ECCE Asia, no. c, pp. 272–279, 2011, doi: 10.1109/ICPE.2011.5944601.

M. Farrokhabadi et al., “Microgrid Stability Definitions, Analysis, and Examples,” IEEE Trans. Power Syst., vol. 35, no. 1, pp. 13–29, 2020, doi: 10.1109/TPWRS.2019.2925703.

U.S. Department of Energy, “DOE Microgrid Workshop Report,” Off. Electr. Deliv. Energy Reliab. Smart Grid R&D Program, San Diego, California., pp. 1–32, 2011.

T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC Microgrids - Part I: A Review of Control Strategies and Stabilization Techniques,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4876–4891, 2016, doi: 10.1109/TPEL.2015.2478859.

J. M. Guerrero, J. C. Vasquez, and J. Matas, “Hierarchical Control of Droop-Controlled AC and DC Microgrids—A General Approach Toward Standardization,” New Zeal. J. Educ. Stud., vol. 58, no. 1, pp. 35–51, 2011, [Online]. Available: http://search.proquest.com/docview/58261700?accountid=8330%5Cnhttp://library.anu.edu.au:4550/resserv?genre=article&issn=00288276&title=New+Zealand+Journal+of+Educational+Studies&volume=27&issue=1&date=1992-05-01&atitle=The+Relational+School:+Fostering+Plu.

L. Ortiz, J. W. González, L. B. Gutierrez, and O. Llanes-Santiago, “A review on control and fault-tolerant control systems of AC/DC microgrids,” Heliyon, vol. 6, no. 8, 2020, doi: 10.1016/j.heliyon.2020.e04799.

K. Sheshyekani, I. Jendoubi, M. Teymuri, M. Hamzeh, H. Karimi, and M. Bayat, “Participation of distributed resources and responsive loads to voltage unbalance compensation in islanded microgrids,” IET Gener. Transm. Distrib., vol. 13, no. 6, pp. 858–867, 2019, doi: 10.1049/iet-gtd.2018.5194.

A. A. Eajal, A. H. Yazdavar, E. F. El-Saadany, and K. Ponnambalam, “On the loadability and voltage stability of islanded ac-dc hybrid microgrids during contingencies,” IEEE Syst. J., vol. 13, no. 4, pp. 4248–4259, 2019, doi: 10.1109/JSYST.2019.2910734.

I. Ziovani, D. Boukhetala, A. M. Darcherif, B. Amghar, and I. El Abbassi, “Hierarchical control for flexible microgrid based on three-phase voltage source inverters operated in parallel,” Int. J. Electr. Power Energy Syst., vol. 95, pp. 188–201, 2018, doi: 10.1016/j.ijepes.2017.08.027.

V. Mariani, F. Vasca, J. C. Vásquez, and J. M. Guerrero, “Model Order Reductions for Stability Analysis of Islanded Microgrids With Droop Control,” IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4344–4354, 2015, doi: 10.1109/TIE.2014.2381151.

J. W. Simpson-Porco, F. Dörfler, and F. Bullo, “Voltage Stabilization in Microgrids via Quadratic Droop Control,” IEEE Trans. Automat. Contr., vol. 62, no. 3, pp. 1239–1253, 2017, doi: 10.1109/TAC.2016.2585094.

T. S. Tran, D. T. Nguyen, and G. Fujita, “The analysis of technical trend in islanding operation, harmonic distortion, stabilizing frequency, and voltage of islanded entities,” Resources, vol. 8, no. 1, 2019, doi: 10.3390/resources8010014.

W. Pavon, E. Inga, and S. Simani, “Optimal distribution network planning applying heuristic algorithms considering allocation of PV rooftop generation,” 2020 Ieee Andescon, Andescon 2020, 2020, doi: 10.1109/ANDESCON50619.2020.9272062.

Z. Shuai et al., “Microgrid stability: Classification and a review,” Renew. Sustain. Energy Rev., vol. 58, pp. 167–179, 2016, doi: 10.1016/j.rser.2015.12.201.

Y. Han, X. Ning, P. Yang, and L. Xu, “Review of Power Sharing, Voltage Restoration and Stabilization Techniques in Hierarchical Controlled DC Microgrids,” IEEE Access, vol. 7, pp. 149202–149223, 2019, doi: 10.1109/ACCESS.2019.2946706.

N. R. Merritt, C. Chakraborty, and P. Bajpai, “New Voltage Control Strategies for VSC-Based DG Units in an Unbalanced Microgrid,” IEEE Trans. Sustain. Energy, vol. 8, no. 3, pp. 1127–1139, 2017, doi: 10.1109/TSTE.2017.2657660.

S. Vargas and W. Pavón, “Optimal sizing and allocation of photovoltaic generation in a georeferenced micro grid using column generation.,” Rev. Técnica Energía, vol. 17, pp. 71–79, 2020, [Online]. Available: https://web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=13905074&AN=144915416&h=EHYDm9%2F4wClyMs2dNf9sO3FTi6LmxG1KdRwSMllGIqgzCkLR0VBOyaqN7gzhF2OCk4IkZHNTI9ribqxeLNDYDw%3D%3D&crl=c&resultNs=AdminWebAuth&resultLocal=.

U. B. Tayab, M. A. Bin Roslan, L. J. Hwai, and M. Kashif, “A review of droop control techniques for microgrid,” Renew. Sustain. Energy Rev., vol. 76, no. March, pp. 717–727, 2017, doi: 10.1016/j.rser.2017.03.028.

S. Pinzón and W. Pavón, “Diseño de Sistemas de Control Basados en el Análisis del Dominio en Frecuencia,” Rev. Técnica “Energía,” vol. 15, no. 2, pp. 76–82, 2019, doi: 10.37116/revistaenergia.v15.n2.2019.380.

M. Babazadeh and H. Karimi, “Robust decentralized control for islanded operation of a microgrid,” IEEE Power Energy Soc. Gen. Meet., pp. 1–8, 2011, doi: 10.1109/PES.2011.6039646.

M. Hamzeh, S. Emamian, H. Karimi, and J. Mahseredjian, “Robust Control of an Islanded Microgrid Under Unbalanced and Nonlinear Load Conditions,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 4, no. 2, pp. 512–520, 2016, doi: 10.1109/JESTPE.2015.2459074.

Q. C. Zhong, “Robust droop controller for accurate proportional load sharing among inverters operated in parallel,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1281–1290, 2013, doi: 10.1109/TIE.2011.2146221.

T. V. Vu, D. Perkins, F. Diaz, D. Gonsoulin, C. S. Edrington, and T. El-Mezyani, “Robust adaptive droop control for DC microgrids,” Electr. Power Syst. Res., vol. 146, no. January, pp. 95–106, 2017, doi: 10.1016/j.epsr.2017.01.021.

A. U. Krismanto, N. Mithulananthan, and A. Lomi, “Dynamic droop control in microgrid for stability enhancement considering RES variation,” 2017 IEEE PES Innov. Smart Grid Technol. Conf. Eur. ISGT-Europe 2017 - Proc., vol. 2018-Janua, pp. 1–6, 2017, doi: 10.1109/ISGTEurope.2017.8260149.

C. F. Bordón, L. Schenberger, F. Berterame, C. M. Chezzi, and J. J. Penco, “Estrategia para la Gestión de una Micro Red,” 2018 IEEE 9th Power, Instrum. Meas. Meet. EPIM 2018, 2018, doi: 10.1109/EPIM.2018.8756437.

F. Adinolfi, F. Conte, S. Massucco, A. Pitto, and F. Silvestro, “Dynamic models for Distributed Energy Resources in a Microgrid environment,” 2015 IEEE 1st Int. Forum Res. Technol. Soc. Ind. RTSI 2015 - Proc., pp. 280–285, 2015, doi: 10.1109/RTSI.2015.7325111.

L. A. Paredes, B. R. Serrano, and M. G. Molina, “Voltage Stability Improvement with a DSTATCOM in a Microgrid Integrated by DG Solar Photovoltaic and Conventional,” Rev. Técnica “energía,” vol. 16, 2020, [Online]. Available: http://revistaenergia.cenace.org.ec/index.php/cenace/article/view/350/408.

R. R. Micky, R. Lakshmi, R. Sunitha, and S. Ashok, “Assessment of voltage stability in microgrid,” Int. Conf. Electr. Electron. Optim. Tech. ICEEOT 2016, pp. 1268–1273, 2016, doi: 10.1109/ICEEOT.2016.7754887.

Artículos similares

1 2 > >> 

También puede {advancedSearchLink} para este artículo.