Estimador de Estado Estático Distribuido para el Monitoreo y Control de Sistemas Eléctrico de Potencia
Estimador de Estado Estático Distribuido para el Monitoreo y Control de Sistemas Eléctrico de Potencia
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- Graciela Colomé, Omar Ramos, Diego Echeverría, Metodología de Identificación de Modos Oscilatorios en Datos Tipo Ambiente de Mediciones PMU , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Andrés Pereira, Roberth Saraguro, Carlos Quinatoa, Evaluación de Pérdidas de Potencia Activa en el Sistema Eléctrico de la Empresa eléctrica Quito (EEQ) Aplicando un Algoritmo de Optimización , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Jorge Lara, Mauricio Samper, Graciela Colomé, Predicción a corto plazo de sistemas de medición inteligentes mediante arquitecturas de aprendizaje profundo multivariable y multipaso , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Wilson Pavón, Sandra Gualotuña, Estrategia de control robusto descentralizado para una micro-red aislada con generación distribuida acoplada para mejorar la estabilidad de voltaje. , Revista Técnica "energía": Vol. 20 Núm. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- Nelson Granda, Karen Paguanquiza, Modelos de Respuesta de la Frecuencia para el Sistema Nacional Interconectado Ecuatoriano , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- HOLGUER VINICIO YUGLA LEMA, Sintonización de los Parámetros de un D-Statcom para la Estabilidad de Voltaje con Presencia de Generación Distribuida , Revista Técnica "energía": Vol. 21 Núm. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
- Rolando Noroña, Edgar Cajas, Carlos Lozada, Marlon Chamba, Análisis de Estabilidad Transitoria Utilizando el Concepto de Inercia y Minería de Datos , Revista Técnica "energía": Vol. 22 Núm. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Julio Lascano, Luis Chiza, Roberth Saraguro, Carlos Quinatoa, Jessy Tapia, Estimación de la Demanda de una Estación de Carga para Vehículos Eléctricos Mediante la Aplicación de Métodos Probabilísticos , Revista Técnica "energía": Vol. 20 Núm. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- Daniel Orbe, Luis Salazar, Paúl Vásquez, Estimación y Análisis de Sensibilidad del Consumo Energético de Buses Eléctricos mediante Simulaciones Microscópicas en líneas de Transporte Público , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Carlos Lozada, David Panchi, Wilson Sánchez, Andrés Jacho, Regresión Lineal para la Identificación del Punto de Máxima Potencia en Microrredes Híbridas Implementado en HYPERSIM , Revista Técnica "energía": Vol. 20 Núm. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
El presente proyecto tiene como objetivo desarrollar una metodología de solución para la estimación de estado estático distribuida aplicada al monitoreo y control de sistemas eléctricos de potencia, esta metodología propuesta se justifica por la necesidad de usar técnicas descentralizadas, en donde los datos se mantengan dentro de la misma operadora y se restrinja el intercambio de información con otras operadoras, minimizando a su vez los tiempos de respuesta con un procesamiento en paralelo de cada subsistema que forma parte del sistema global; lo que trae importantes beneficios al monitoreo y control del sistema a través del SCADA.
Para desarrollar la técnica propuesta, el sistema de prueba es dividido en subsistemas, para los cuales se establece las ecuaciones de cada uno y las ecuaciones de borde que las relacionan. Se desarrolla la programación del algoritmo de estimación de estado utilizando el método de mínimos cuadrados ponderados, este algoritmo es ejecutado en cada subsistema, con la finalidad de estimar las variables de estado locales.
Finalmente se realiza la integración de los resultados de estimación local en una solución global, permitiendo de esta manera estimar las variables de estado globales que determinan el comportamiento del sistema. Los datos de entrada para el procesamiento del algoritmo son extraídos del simulador Power Factory Digsilent, en donde se ha implementado el modelo de prueba, New England Test System.
Visitas del artículo 905 | Visitas PDF 265








