Predicción a corto plazo de sistemas de medición inteligentes mediante arquitecturas de aprendizaje profundo multivariable y multipaso

Contenido principal del artículo

Jorge Lara
https://orcid.org/0000-0003-4035-3524
Mauricio Samper
https://orcid.org/0000-0003-2416-1709
Graciela Colomé
https://orcid.org/0000-0002-2926-5366

Resumen

Las Redes Eléctricas Inteligentes de Distribución (REID) han revolucionado la industria eléctrica al permitir un control y monitoreo más eficiente del suministro eléctrico, con un componente clave siendo los medidores inteligentes (SM). Estos recopilan información sobre la demanda, energía, distorsión armónica, entre otros, que deben ser almacenados y gestionados eficientemente en un sistema de gestión de datos de medición (MDMS). El MDMS debe garantizar la obtención de un conjunto completo de datos para su uso en algoritmos que aseguren la confiabilidad y calidad del suministro eléctrico. Para abordar el desafío de gestionar la gran cantidad de datos generados por los SM, se han propuesto diferentes técnicas de predicción de mediciones a corto, mediano y largo plazo, destacando el uso de inteligencia artificial como las Redes Neuronales Artificiales (ANN) y métodos de Aprendizaje Profundo (DL) debido a su capacidad de adaptación a diferentes variables de entrada y salida con diversos horizontes temporales. Además, se destaca la influencia de la diversidad de Tecnologías de la Información y Comunicación (TIC) en el tiempo de actualización y almacenamiento de datos en un MDMS. En este sentido, este trabajo tiene como objetivo identificar qué arquitectura o arquitecturas de ANN o DL podrían ser más adecuadas para aplicaciones en empresas, estudios o investigaciones, demostrando métricas de rendimiento favorables en diferentes escenarios de frecuencia de muestreo y tiempos de actualización de datos típicos en un REID. Esto es relevante debido a la necesidad del MDMS de realizar predicciones multivariables y multipaso a corto plazo para completar la información, hasta que la misma esté disponible o se actualice.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Lara, J., Samper, M., & Colomé, G. (2024). Predicción a corto plazo de sistemas de medición inteligentes mediante arquitecturas de aprendizaje profundo multivariable y multipaso. Revista Técnica "energía", 21(1), PP. 153–164. https://doi.org/10.37116/revistaenergia.v21.n1.2024.652
Sección
TECNOLÓGICOS E INNOVACIÓN

Citas

Y. Kabalci, “A survey on smart metering and smart grid communication,” Renew. Sustain. Energy Rev., vol. 57, pp. 302–318, May 2016, doi: 10.1016/j.rser.2015.12.114.

S. Chakraborty, S. Das, T. Sidhu, and A. K. Siva, “Smart meters for enhancing protection and monitoring functions in emerging distribution systems,” Int. J. Electr. Power Energy Syst., vol. 127, no. November 2020, p. 106626, May 2021, doi: 10.1016/j.ijepes.2020.106626.

Y. Wang, Q. Chen, T. Hong, and C. Kang, “Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 3125–3148, May 2019, doi: 10.1109/TSG.2018.2818167.

M. H. Rashid, “AMI Smart Meter Big Data Analytics for Time Series of Electricity Consumption,” in 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), IEEE, 2018, pp. 1771–1776. doi: 10.1109/TrustCom/BigDataSE.2018.00267.

F. Dewangan, A. Y. Abdelaziz, and M. Biswal, “Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review,” Energies, vol. 16, no. 3, p. 1404, Jan. 2023, doi: 10.3390/en16031404.

I. K. Nti, M. Teimeh, O. N. Boateng, and A. F. Adekoya, “Electricity load forecasting : a systematic review,” J. Electr. Syst. Inf. Technol., vol. 8, 2020, doi: 10.1186/s43067-020-00021-8.

H. Habbak, M. Mahmoud, K. Metwally, M. M. Fouda, and M. I. Ibrahem, “Load Forecasting Techniques and Their Applications in Smart Grids,” Energies, vol. 16, no. 3. p. 1480, Feb. 02, 2023. doi: 10.3390/en16031480.

K. E. ArunKumar, D. V. Kalaga, C. Mohan Sai Kumar, M. Kawaji, and T. M. Brenza, “Comparative analysis of Gated Recurrent Units (GRU), long Short-Term memory (LSTM) cells, autoregressive Integrated moving average (ARIMA), seasonal autoregressive Integrated moving average (SARIMA) for forecasting COVID-19 trends,” Alexandria Eng. J., vol. 61, no. 10, pp. 7585–7603, Oct. 2022, doi: 10.1016/j.aej.2022.01.011.

M. T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based neural machine translation,” Conf. Proc. - EMNLP 2015 Conf. Empir. Methods Nat. Lang. Process., pp. 1412–1421, 2015, doi: 10.18653/v1/d15-1166.

D. Bahdanau, K. H. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and translate,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–5, 2015, doi: doi.org/10.48550/arXiv.1409.0473.

J. Li, Z. Tu, B. Yang, M. R. Lyu, and T. Zhang, “Multi-Head Attention with Disagreement Regularization,” in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Stroudsburg, PA, USA: Association for Computational Linguistics, 2018, pp. 2897–2903. doi: 10.18653/v1/D18-1317.

A. M. Pirbazari, M. Farmanbar, A. Chakravorty, and C. Rong, “Short-term load forecasting using smart meter data: A generalization analysis,” Processes, vol. 8, no. 4, 2020, doi: 10.3390/PR8040484.

I. Khatri, X. Dong, J. Attia, and L. Qian, “Short-term Load Forecasting on Smart Meter via Deep Learning,” 51st North Am. Power Symp. NAPS 2019, no. October 2021, 2019, doi: 10.1109/NAPS46351.2019.9000185.

C. Tarmanini, N. Sarma, C. Gezegin, and O. Ozgonenel, “Short term load forecasting based on ARIMA and ANN approaches,” Energy Reports, vol. 9, pp. 550–557, May 2023, doi: 10.1016/j.egyr.2023.01.060.

M. R. Hossain, A. M. T. Oo, and A. B. M. Shawkat Ali, “Evolution of smart grid and some pertinent issues,” in AUPEC 2010 - 20th Australasian Universities Power Engineering Conference: “Power Quality for the 21st Century,” 2010. [Online]. Available: https://ieeexplore.ieee.org/document/5710797

H. Farhangi, “The path of the smart grid,” IEEE Power Energy Mag., vol. 8, no. 1, pp. 18–28, Jan. 2010, doi: 10.1109/MPE.2009.934876.

B. Seal, “Advanced Metering Infrastructure (AMI) Considerations for Distributed Renewables Integration,” Knoxville, Tennessee 39032, 2009. [Online]. Available: https://www.epri.com/#/pages/product/1019585/

M. Kuzlu, M. Pipattanasomporn, and S. Rahman, “Communication network requirements for major smart grid applications in HAN, NAN and WAN,” Comput. Networks, vol. 67, pp. 74–88, Jul. 2014, doi: 10.1016/j.comnet.2014.03.029.

L. Hu, Z. Wang, X. Liu, A. V. Vasilakos, and F. E. Alsaadi, “Recent advances on state estimation for power grids with unconventional measurements,” IET Control Theory Appl., vol. 11, no. 18, pp. 3221–3232, Dec. 2017, doi: 10.1049/iet-cta.2017.0629.

D. Syed, A. Zainab, A. Ghrayeb, S. S. Refaat, H. Abu-Rub, and O. Bouhali, “Smart Grid Big Data Analytics: Survey of Technologies, Techniques, and Applications,” IEEE Access, vol. 9, pp. 59564–59585, 2021, doi: 10.1109/ACCESS.2020.3041178.

G. Dileep, “A survey on smart grid technologies and applications,” Renew. Energy, vol. 146, pp. 2589–2625, Feb. 2020, doi: 10.1016/j.renene.2019.08.092.

S.-H. Kim, Z. W. Geem, and G.-T. Han, “Hyperparameter Optimization Method Based on Harmony Search Algorithm to Improve Performance of 1D CNN Human Respiration Pattern Recognition System,” Sensors, vol. 20, no. 13, p. 3697, Jul. 2020, doi: 10.3390/s20133697.

H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. A. Muller, “Deep learning for time series classification: a review,” Data Min. Knowl. Discov., vol. 33, no. 4, pp. 917–963, Jul. 2019, doi: 10.1007/s10618-019-00619-1.

A. Casolaro, V. Capone, G. Iannuzzo, and F. Camastra, “Deep Learning for Time Series Forecasting: Advances and Open Problems,” Information, vol. 14, no. 11, p. 598, Nov. 2023, doi: 10.3390/info14110598.

Z. Zhang and Y. Dong, “Temperature Forecasting via Convolutional Recurrent Neural Networks Based on Time-Series Data,” Complexity, vol. 2020, pp. 1–8, Mar. 2020, doi: 10.1155/2020/3536572.

C. Y. Yang, P. C. Chen, and W. C. Huang, “Cross-Domain Transfer of EEG to EEG or ECG Learning for CNN Classification Models,” Sensors, vol. 23, no. 5, p. 2458, Feb. 2023, doi: 10.3390/s23052458.

K. Berahmand, F. Daneshfar, E. S. Salehi, Y. Li, and Y. Xu, “Autoencoders and their applications in machine learning: a survey,” Artif. Intell. Rev., vol. 57, no. 2, 2024, doi: 10.1007/s10462-023-10662-6.

P. Li, Y. Pei, and J. Li, “A comprehensive survey on design and application of autoencoder in deep learning,” Appl. Soft Comput., vol. 138, 2023, doi: 10.1016/j.asoc.2023.110176.

A. Almalaq and G. Edwards, “A review of deep learning methods applied on load forecasting,” in Proceedings - 16th IEEE International Conference on Machine Learning and Applications, ICMLA 2017, IEEE, Dec. 2017, pp. 511–516. doi: 10.1109/ICMLA.2017.0-110.

J. F. Torres, D. Hadjout, A. Sebaa, F. Martínez-Álvarez, and A. Troncoso, “Deep Learning for Time Series Forecasting: A Survey,” Big Data, vol. 9, no. 1, pp. 3–21, Feb. 2021, doi: 10.1089/big.2020.0159.

G. Hebrail and A. Berard, “Household Electric Power Consumption,” UCI Machine Learning Repository. [Online]. Available: https://doi.org/10.24432/C58K54

Artículos similares

1 2 3 > >> 

También puede {advancedSearchLink} para este artículo.