Modelo Eléctrico de un Sistema Piezoeléctrico para Generación de Energía a Través de la Fuerza Aplicada en un Paso
Electrical Model of a Piezoelectric System for Generating Energy Through the Force Applied in a Step
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- W. Almeida , J. Cepeda , V. Flores , Modelación Estática y Dinámica del AGC en PowerFactory Integrado a la Base de Datos del Sistema Eléctrico Ecuatoriano , Revista Técnica "energía": Vol. 12 Núm. 1 (2016): Revista Técnica "energía", Edición No. 12
- A. Riofrio, D. Carrión, D. Vaca, Propuesta de Modelo de Operación Aplicado a Micro Redes Fotovoltaicas en Generación Distribuida , Revista Técnica "energía": Vol. 12 Núm. 1 (2016): Revista Técnica "energía", Edición No. 12
- G. Argüello, J. Cepeda, D. Echeverría, S. Falcones, J. Layana, Desafíos en la Implementación de un Laboratorio de Simulación Digital en Tiempo Real de Sistemas Eléctricos de Potencia , Revista Técnica "energía": Vol. 12 Núm. 1 (2016): Revista Técnica "energía", Edición No. 12
- R. Medina, D. Morales, B. Tapia, D. Criollo, J. Romero, P. Guamán, P. Arévalo, Modelado del Tranvía Citadis-302 Implementado en la Ciudad de Cuenca Utilizando Matlab - Simulink , Revista Técnica "energía": Vol. 12 Núm. 1 (2016): Revista Técnica "energía", Edición No. 12
- G. Rivera, J.A. Játiva, S. Grijalva, Revisión del Estado del Arte del Estimador de Estado Generalizado y Evaluación de sus Principales Algoritmos para Aplicarlos a un Sistema de Potencia Real , Revista Técnica "energía": Vol. 12 Núm. 1 (2016): Revista Técnica "energía", Edición No. 12
- M. Nieto , Formulación de un Marco de Referencia para la Integración de la Convergencia de Tecnologías Operacionales y de Información al Modelo de Gestión del CENACE , Revista Técnica "energía": Vol. 12 Núm. 1 (2016): Revista Técnica "energía", Edición No. 12
- P. Remache, D. Pantoja, P. Lozada, Energy analysis of techniques and materials used in sound insulation of music rehearsal rooms , Revista Técnica "energía": Vol. 12 Núm. 1 (2016): Revista Técnica "energía", Edición No. 12
- J.R. Muñoz, C.E. Mantilla, H. Bayas , Modelación de Sistema Termosolar para Pasteurización en Producción de Quesos de Comunidades Andinas, Provincia de Chimborazo , Revista Técnica "energía": Vol. 12 Núm. 1 (2016): Revista Técnica "energía", Edición No. 12
- M. Ullauri, J. Cepeda, H. Arcos, Modelación y Validación de Sistemas de Control de Unidades de Generación del Sistema Nacional Interconectado Ecuatoriano , Revista Técnica "energía": Vol. 11 Núm. 1 (2015): Revista Técnica "energía", Edición No. 11
- R. Cubillo, O. de Lima, Alerta Situacional en la Operación en Tiempo Real , Revista Técnica "energía": Vol. 11 Núm. 1 (2015): Revista Técnica "energía", Edición No. 11
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
Los sistemas piezoeléctricos han tomado relevancia al momento de explorar nuevos métodos de generación de energía. La deformación mecánica que se produce en un transductor piezoeléctrico al aplicar una fuerza sobre éste origina cierta cantidad de energía que puede emplearse para transformar la fuerza que ejerce una persona mediante una pisada en energía eléctrica. La eficiencia en la conversión mecánica-eléctrica del material piezoeléctrico puede reducir la dependencia de fuentes tradicionales. Sin embargo, la falta de un modelo específico limita la aplicación práctica en almacenamiento energético, aunque existen modelos teóricos su validación con modelos prácticos es casi nula. Este documento busca simular el funcionamiento del transductor piezoeléctrico PZT-51 a través de su modelo eléctrico tomando en consideración las características mecánicas, en aplicaciones de almacenamiento de energía. Para la validación del modelo generado en Simulink® se emplearon parámetros como la permitividad dieléctrica, el coeficiente piezoeléctrico y el factor de pérdida, proporcionados por el fabricante para garantizar que los resultados obtenidos se asemejan a la realidad.
Visitas del artículo 7 | Visitas PDF 1
Descargas
- [1] Z. Leí, B. X. Tian y Q. Feng. “Recolección de energía piezoeléctrica a partir de la marcha humana mediante un mecanismo de amplificación de dos etapas”. ScienceDirect. Accedido el 14 de abril de 2025. [En línea]. Disponible: https://www.sciencedirect.com/science/article/abs/pii/S0360544219318353
- [2] B. Zubair, P. Riffat Asim y Q. Faisal. “Generación de energía eléctrica utilizando material piezoeléctrico de titanato de circonato de plomo (PZT-5A) : Verificaciones analíticas, numéricas y experimentales”. Home page. Accedido el 28 de marzo de 2025. [En línea]. Disponible: https://iris.uniroma1.it/bitstream/11573/1019687/1/Elahi_Generation_2016.pdf
- [3] M. Farnsworth, A. Tiwari y R. Dorey. “Modelización, simulación y optimización de un recolector de energía piezoeléctrica”. ScienceDirect. Accedido el 9 de abril de 2025. [En línea]. Disponible: https://www.sciencedirect.com/science/article/pii/S2212827114009718
- [4] A. Kevin and S. Ordoñeez, “Modelo de circuito equivalente Butterworth Van Dyke para transductores piezoeléctricos,” CD 12360, Documento técnico interno, 24 de agosto de 2022.
- [5] J. Ibáñez García, E-STEP: Generador piezoeléctrico. Aplicación a escaleras, Proyecto Final de Carrera, Escuela Universitaria de Ingeniería Técnica Industrial de Barcelona, Universitat Politècnica de Catalunya, 2012.
- [6] A. Menéndez Melé y A. Arribalzaga Jové. “Desarrollo de un prototipo de baldosa generadora de energía eléctrica a partir de la piezoelectricidad y almacenamiento de la energia producida”. UPCommons :: Inici. Accedido el 18 de octubre de 2025. [En línea]. Disponible: https://upcommons.upc.edu/server/api/core/bitstreams/b3c5ad59-ae56-4cb6-9792-f5930bab4eaf/content
- [7] J. Cardenas Ramirez. “Configuración, material y eficiencia de sistemas piezoeléctricos para la generación de energía eléctrica”. repositorio.ucv. Accedido el 18 de octubre de 2025. [En línea]. Disponible: https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/107176/Cardenas_RJ-SD.pdf?sequence=1&isAllowed=y
- [8] N. Martínez, “Energía piezoeléctrica: Aprovechando el movimiento humano para generar electricidad,” Renovables Verdes, [En línea]. Disponible: https://www.renovablesverdes.com/energia-piezoelectrica-convierte-movimiento-humano-en-electricidad/
- [9] M. A. Salazar Lozano, L. G. Butzmann Álvarez, O. A. García Cano y M. Parra Escobedo, “Walking Energy: Generador de energía por pisada,” Tecnológico Nacional de México/Instituto Tecnológico de Durango, México, 2024. [En línea]. Disponible: https://www.eumed.net/uploads/articulos/e9f1501a443fc2252f99b6e9dce62c8a.pdf
- [10] M. Martínez Euklidiadas, “Piezoelectricidad: usando las pisadas de los ciudadanos para generar energía,” Tomorrow.City, 16 de noviembre de 2020. [En línea]. Disponible: https://www.tomorrow.city/es/piezoelectricidad-generar-energia-con-movimiento/
- [11] Starner, T., & Paradiso, J. A. (2004). Human generated power for mobile electronics. Low-power electronics design, 45, 1-35.








