Modelo Eléctrico de un Sistema Piezoeléctrico para Generación de Energía a Través de la Fuerza Aplicada en un Paso
Electrical Model of a Piezoelectric System for Generating Energy Through the Force Applied in a Step
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- W. Vásquez , J. Játiva , Modelación, Simulación y Control de Aerogeneradores con Generador de Inducción Doblemente Alimentado Utilizando Matlab , Revista Técnica "energía": Vol. 11 Núm. 1 (2015): Revista Técnica "energía", Edición No. 11
- Marco Valencia, Un Modelo de Coordinación Hidrotérmica de Corto Plazo para el Sistema Eléctrico Ecuatoriano , Revista Técnica "energía": Vol. 1 Núm. 1 (2005): Revista Técnica "energía", Edición No. 1
- Gonzalo Uquillas, Germán Pancho, Tecnología y Modelo de Seguridad de Negocio para el Cenace: Simec un Caso a Considerar , Revista Técnica "energía": Vol. 2 Núm. 1 (2006): Revista Técnica "energía", Edición No. 2
- José Medina, Roberto Barba, Desarrollo del Proyecto para Estructurar el Proceso de Mejoramiento de la Operación en Tiempo Real del Sni a Través del Sistema “simulador de Entrenamiento para Operadores –seo” , Revista Técnica "energía": Vol. 2 Núm. 1 (2006): Revista Técnica "energía", Edición No. 2
- Vladimir Burbano , Ricardo Narváez, Evaluación de la pre factibilidad para la generación de energía eléctrica mediante la sinergia entre las energías eólica y almacenamiento por bombeo de agua en la isla San Cristóbal - Galápagos , Revista Técnica "energía": Vol. 17 Núm. 2 (2021): Revista Técnica "energía", Edición No. 17, ISSUE II
- Daniela Romo, Diego Morales , Eficiencia Energética en la Universidad Católica sede Azogues un enfoque de implementación técnico – económico basado en energía solar , Revista Técnica "energía": Vol. 17 Núm. 2 (2021): Revista Técnica "energía", Edición No. 17, ISSUE II
- Luis Tipán , Esteban De La Torre, Caracterizacion de Energia Solar Fotovoltaica utilizando el Modelo Aniso Trópico de Muneer , Revista Técnica "energía": Vol. 17 Núm. 2 (2021): Revista Técnica "energía", Edición No. 17, ISSUE II
- Hugo Pico, Iván Pazmiño, Bernardo Ponce, Análisis de los factores que intervienen en el envejecimiento prematuro de las baterías de ion-litio mediante modelo teórico validado en laboratorio , Revista Técnica "energía": Vol. 17 Núm. 2 (2021): Revista Técnica "energía", Edición No. 17, ISSUE II
- José Enríquez , Carlos Del Hierro, Roberto Sánchez, David Panchi, Integración de un Sistema de Monitoreo de Condiciones Climáticas al Sistema de Gestión de Energía Nacional , Revista Técnica "energía": Vol. 17 Núm. 2 (2021): Revista Técnica "energía", Edición No. 17, ISSUE II
- William Quitiaquez, Jorge Chimarro, John Valarezo, Patricio Quitiaquez, César Melendrez, Fernando Toapanta, Validación de un Prototipo de Medidor de Energía Trifásico como Apoyo para una Auditoría Energética , Revista Técnica "energía": Vol. 17 Núm. 2 (2021): Revista Técnica "energía", Edición No. 17, ISSUE II
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
Los sistemas piezoeléctricos han tomado relevancia al momento de explorar nuevos métodos de generación de energía. La deformación mecánica que se produce en un transductor piezoeléctrico al aplicar una fuerza sobre éste origina cierta cantidad de energía que puede emplearse para transformar la fuerza que ejerce una persona mediante una pisada en energía eléctrica. La eficiencia en la conversión mecánica-eléctrica del material piezoeléctrico puede reducir la dependencia de fuentes tradicionales. Sin embargo, la falta de un modelo específico limita la aplicación práctica en almacenamiento energético, aunque existen modelos teóricos su validación con modelos prácticos es casi nula. Este documento busca simular el funcionamiento del transductor piezoeléctrico PZT-51 a través de su modelo eléctrico tomando en consideración las características mecánicas, en aplicaciones de almacenamiento de energía. Para la validación del modelo generado en Simulink® se emplearon parámetros como la permitividad dieléctrica, el coeficiente piezoeléctrico y el factor de pérdida, proporcionados por el fabricante para garantizar que los resultados obtenidos se asemejan a la realidad.
Visitas del artículo 7 | Visitas PDF 1
Descargas
- [1] Z. Leí, B. X. Tian y Q. Feng. “Recolección de energía piezoeléctrica a partir de la marcha humana mediante un mecanismo de amplificación de dos etapas”. ScienceDirect. Accedido el 14 de abril de 2025. [En línea]. Disponible: https://www.sciencedirect.com/science/article/abs/pii/S0360544219318353
- [2] B. Zubair, P. Riffat Asim y Q. Faisal. “Generación de energía eléctrica utilizando material piezoeléctrico de titanato de circonato de plomo (PZT-5A) : Verificaciones analíticas, numéricas y experimentales”. Home page. Accedido el 28 de marzo de 2025. [En línea]. Disponible: https://iris.uniroma1.it/bitstream/11573/1019687/1/Elahi_Generation_2016.pdf
- [3] M. Farnsworth, A. Tiwari y R. Dorey. “Modelización, simulación y optimización de un recolector de energía piezoeléctrica”. ScienceDirect. Accedido el 9 de abril de 2025. [En línea]. Disponible: https://www.sciencedirect.com/science/article/pii/S2212827114009718
- [4] A. Kevin and S. Ordoñeez, “Modelo de circuito equivalente Butterworth Van Dyke para transductores piezoeléctricos,” CD 12360, Documento técnico interno, 24 de agosto de 2022.
- [5] J. Ibáñez García, E-STEP: Generador piezoeléctrico. Aplicación a escaleras, Proyecto Final de Carrera, Escuela Universitaria de Ingeniería Técnica Industrial de Barcelona, Universitat Politècnica de Catalunya, 2012.
- [6] A. Menéndez Melé y A. Arribalzaga Jové. “Desarrollo de un prototipo de baldosa generadora de energía eléctrica a partir de la piezoelectricidad y almacenamiento de la energia producida”. UPCommons :: Inici. Accedido el 18 de octubre de 2025. [En línea]. Disponible: https://upcommons.upc.edu/server/api/core/bitstreams/b3c5ad59-ae56-4cb6-9792-f5930bab4eaf/content
- [7] J. Cardenas Ramirez. “Configuración, material y eficiencia de sistemas piezoeléctricos para la generación de energía eléctrica”. repositorio.ucv. Accedido el 18 de octubre de 2025. [En línea]. Disponible: https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/107176/Cardenas_RJ-SD.pdf?sequence=1&isAllowed=y
- [8] N. Martínez, “Energía piezoeléctrica: Aprovechando el movimiento humano para generar electricidad,” Renovables Verdes, [En línea]. Disponible: https://www.renovablesverdes.com/energia-piezoelectrica-convierte-movimiento-humano-en-electricidad/
- [9] M. A. Salazar Lozano, L. G. Butzmann Álvarez, O. A. García Cano y M. Parra Escobedo, “Walking Energy: Generador de energía por pisada,” Tecnológico Nacional de México/Instituto Tecnológico de Durango, México, 2024. [En línea]. Disponible: https://www.eumed.net/uploads/articulos/e9f1501a443fc2252f99b6e9dce62c8a.pdf
- [10] M. Martínez Euklidiadas, “Piezoelectricidad: usando las pisadas de los ciudadanos para generar energía,” Tomorrow.City, 16 de noviembre de 2020. [En línea]. Disponible: https://www.tomorrow.city/es/piezoelectricidad-generar-energia-con-movimiento/
- [11] Starner, T., & Paradiso, J. A. (2004). Human generated power for mobile electronics. Low-power electronics design, 45, 1-35.








