Metodología basada en Cadenas de Markov para la Predicción de la Demanda y Toma de Decisiones en el corto plazo. Caso de Estudio: Empresa Eléctrica Quito
Short Term Demand Forecasting methodology for Power Decision Making Based on Markov Chain. Study Case – EEQ
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- Luis Paredes, Benjamín Serrano, Marcelo Molina , Mejoramiento de la Estabilidad de Tensión con un DSTATCOM en una Microrred Integrada por GD Solar Fotovoltaica y Convencional , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- Javier Martínez , Mario Bustamante , Paolo Salazar , José Macias , A. P. Lobato, Ricardo Narváez , Martin Cordovez , Caracterización Térmica y Mecánica de la Madera de Roble , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
- L.A. Paredes, Electromovilidad y Eficiencia Energética en el Transporte Público de Pasajeros del Ecuador Continental , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
- S. Quishpe, M. Padilla, M. Ruiz, Despliegue Óptimo de Redes Inalámbricas para Medición Inteligente , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
- Paúl Potes, Xavier Proaño, Diseño de un Sistema Fotovoltaico Conectado a la Red en el Bloque B de la Universidad Técnica de Cotopaxi , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- Gabriel Salazar, Santiago Ruales, Análisis del Método de Pago de Potencia en el Mercado Eléctrico Ecuatoriano , Revista Técnica "energía": Vol. 4 Núm. 1 (2008): Revista Técnica "energía", Edición No. 4
- Nelson Granda, Hugo Arcos, Flujo Óptimo de Potencia con Restricciones de Seguridad de Voltaje , Revista Técnica "energía": Vol. 4 Núm. 1 (2008): Revista Técnica "energía", Edición No. 4
- Freddy Anchaluisa, Víctor Hugo Hinojosa, Pronóstico de Caudales de Mediano y Corto Plazo Utilizando Razonamiento Inductivo Fuzzy y Algoritmos Evolutivos – Aplicación para las Centrales de Embalse y Centrales de Pasada , Revista Técnica "energía": Vol. 4 Núm. 1 (2008): Revista Técnica "energía", Edición No. 4
- Gioconda Rodríguez, Juan Vallecilla, Adquisición de Datos en el Sistema de Manejo de Energía, Network Manager , Revista Técnica "energía": Vol. 4 Núm. 1 (2008): Revista Técnica "energía", Edición No. 4
- Gabriel Salazar, Gabriel Argüello, Rentas de Congestión en las Transacciones Internacionales de Electricidad; Análisis para las Transacciones Ecuador – Colombia , Revista Técnica "energía": Vol. 3 Núm. 1 (2007): Revista Técnica "energía", Edición No. 3
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
Artículos más leídos del mismo autor/a
- Paulina Vásquez, Michelle Nieto, Roberto Sánchez, Jaime Cepeda, Propuesta metodológica para la exploración de redes de conocimiento mediante una base de datos orientada a grafos de los datos del Sistema de Gestión de Conocimiento de CENACE , Revista Técnica "energía": Vol. 17 Núm. 2 (2021): Revista Técnica "energía", Edición No. 17, ISSUE II
- José Enríquez , Carlos Del Hierro, Roberto Sánchez, David Panchi, Integración de un Sistema de Monitoreo de Condiciones Climáticas al Sistema de Gestión de Energía Nacional , Revista Técnica "energía": Vol. 17 Núm. 2 (2021): Revista Técnica "energía", Edición No. 17, ISSUE II
La investigación del presente trabajo está centrada en determinar el pronóstico de la demanda de potencia eléctrica en corto plazo. Para ello, se utilizó y se comparó los “perfiles de demanda” y la señal en tiempo real de la demanda eléctrica de la Empresa Eléctrica Quito S.A, EEQ, para llegar a determinar el perfil más esperado en el día. En este sentido, se utilizó el Modelo Oculto de Markov (Hidden Markov Model, HMM) para el pronóstico de la demanda en horizonte de tiempo de corto plazo. Para esto, primeramente se realizó un proceso de aprendizaje/entrenamiento al modelo con la base de datos Sistema de Información Validada Operativa, SIVO. Posteriormente, se realizó el proceso de descubrimiento de perfiles de demanda, que permitirá en pasos posteriores encontrar el perfil más esperado a ocurrir durante el día. La propuesta establece un “área de demanda esperada” que se convierte en una referencia que define el comportamiento de la demanda lo largo del día.
Se realizó una evaluación en un periodo de 30 días de la metodología aplicada al sistema de la EEQ, y se observó que la herramienta acierta en un 86% de los casos y el valor de demanda en tiempo real se encuentra dentro de la banda de demanda esperada.
El propósito de este trabajo es brindar una aplicación a los operadores del Sistema Nacional Interconectado, SNI, del Operador Nacional, CENACE, que permita tomar decisiones en el periodo de corto plazo optimizando los recursos de generadores existentes.
Visitas del artículo 1736 | Visitas PDF 552








