Metodología basada en Cadenas de Markov para la Predicción de la Demanda y Toma de Decisiones en el corto plazo. Caso de Estudio: Empresa Eléctrica Quito
Short Term Demand Forecasting methodology for Power Decision Making Based on Markov Chain. Study Case – EEQ
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- Terry Solis, Cristina Calderón, Yang Liu , Optimización de la Producción de Xilanasa Bacteriana a Partir de Bacillus sp. K1 con el Uso de Residuos Lignocelulósicos , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- Christian Ortiz, Gabriel Salazar, Metodología para la Planificación y Control de la Ejecución de Mantenimientos Preventivos y Correctivos de Líneas de Subtransmisión , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- Rodolfo Rosés, Dario Carestía, Guillermo Gizzi, Implementación de Aplicaciones EMS en un Sistema de Subtransmisión , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- René Gualotuña, Juan Ramírez, Miguel Lucio, Nelson Granda, Franklin Quilumba, Estimación de los Parámetros Eléctricos de una Línea de Transmisión Trifásica a Escala de Laboratorio a Partir de Mediciones de Transitorios de Voltaje , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- John Morales, Paúl Dután, Análisis de sensibilidad para la determinación de curvas características de tiempos muertos vs potencia de transferencia aplicados a líneas de transmisión , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- Jaime Cepeda, Santiago Chamba, Determinación del Modelo Estocástico del Estado de Carga de Baterías para el cómputo de Flujo de Potencia Probabilístico de Microrredes , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
- A. Ríos, D. Taipe, Manuel Otorongo, J. Guamán, Diseño e Implementación de una Plataforma CloudIoT de Control Inteligente de un Sistema de Iluminación Interior con Suministro en LVDC. , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
- O. Pineda, S. Espinel , M. Ruiz, Diseño e Implementación de un Sistema de Gestión de Energía Enfocado en el Control de Equipos y Luminarias , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
- Cristian Fabara, Diego Maldonado, Mauricio Soria, Antonio Tovar, Predicción de la Generación para un Sistema Fotovoltaico mediante la aplicación de técnicas de Minería de Datos , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
- W. Quitiaquez, A. Simbaña, I. Simbaña, C. Isaza, C. Nieto, P. Quitiaquez, F. Toapanta, Análisis Comparativo entre el Aceite Mineral y el Aceite Vegetal Utilizados como Dieléctricos y Refrigerantes para Transformadores de Potencia , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
Artículos más leídos del mismo autor/a
- Paulina Vásquez, Michelle Nieto, Roberto Sánchez, Jaime Cepeda, Propuesta metodológica para la exploración de redes de conocimiento mediante una base de datos orientada a grafos de los datos del Sistema de Gestión de Conocimiento de CENACE , Revista Técnica "energía": Vol. 17 Núm. 2 (2021): Revista Técnica "energía", Edición No. 17, ISSUE II
- José Enríquez , Carlos Del Hierro, Roberto Sánchez, David Panchi, Integración de un Sistema de Monitoreo de Condiciones Climáticas al Sistema de Gestión de Energía Nacional , Revista Técnica "energía": Vol. 17 Núm. 2 (2021): Revista Técnica "energía", Edición No. 17, ISSUE II
La investigación del presente trabajo está centrada en determinar el pronóstico de la demanda de potencia eléctrica en corto plazo. Para ello, se utilizó y se comparó los “perfiles de demanda” y la señal en tiempo real de la demanda eléctrica de la Empresa Eléctrica Quito S.A, EEQ, para llegar a determinar el perfil más esperado en el día. En este sentido, se utilizó el Modelo Oculto de Markov (Hidden Markov Model, HMM) para el pronóstico de la demanda en horizonte de tiempo de corto plazo. Para esto, primeramente se realizó un proceso de aprendizaje/entrenamiento al modelo con la base de datos Sistema de Información Validada Operativa, SIVO. Posteriormente, se realizó el proceso de descubrimiento de perfiles de demanda, que permitirá en pasos posteriores encontrar el perfil más esperado a ocurrir durante el día. La propuesta establece un “área de demanda esperada” que se convierte en una referencia que define el comportamiento de la demanda lo largo del día.
Se realizó una evaluación en un periodo de 30 días de la metodología aplicada al sistema de la EEQ, y se observó que la herramienta acierta en un 86% de los casos y el valor de demanda en tiempo real se encuentra dentro de la banda de demanda esperada.
El propósito de este trabajo es brindar una aplicación a los operadores del Sistema Nacional Interconectado, SNI, del Operador Nacional, CENACE, que permita tomar decisiones en el periodo de corto plazo optimizando los recursos de generadores existentes.
Visitas del artículo 1736 | Visitas PDF 552








