Minería de Datos para Reconocimiento de Patrones en el Análisis de Seguridad Estática de Sistemas de Potencia ante Eventos de Contingencia
Data Mining for Patterns Recognition of Power Systems Static Security Assessment with Contingency Events
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- Josua Oña, Luis Ruales, Análisis de sobrevoltajes por impulso atmosférico en sistemas de Transmisión con discontinuidades líneas de transmisión aéreas y cables aislados, usando ATP , Revista Técnica "energía": Vol. 20 Núm. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- Javier Fontalvo, Paola Ramírez, Joffre Constante, Prospectiva de Autogeneración en el Ecuador mediante uso de Modelo LEAP , Revista Técnica "energía": Vol. 15 Núm. 1 (2018): Revista Técnica "energía", Edición No. 15
- Roberto Sanchez, Patricio Barrera, Metodología basada en Cadenas de Markov para la Predicción de la Demanda y Toma de Decisiones en el corto plazo. Caso de Estudio: Empresa Eléctrica Quito , Revista Técnica "energía": Vol. 15 Núm. 1 (2018): Revista Técnica "energía", Edición No. 15
- Byron Chiguano, Juan Ramírez, Franklin Quilumba, Carlos Gallardo, Estimación de los Parámetros Eléctricos de un Generador Sincrónico basada en Mediciones de Laboratorio usando Métodos de Optimización No Lineal , Revista Técnica "energía": Vol. 15 Núm. 1 (2018): Revista Técnica "energía", Edición No. 15
- Diego Jijón, Jessica Constante, Geovanna Villacreses, Tania Guerrero, Estimación del rendimiento de aerogeneradores de 2 MW en el Ecuador: Potencial Eolo-Eléctrico , Revista Técnica "energía": Vol. 15 Núm. 1 (2018): Revista Técnica "energía", Edición No. 15
- Alberto Rios, Diego Taipe, Manuel Otorongo, Optimización del Consumo Eléctrico de los Sistemas de Iluminación en Espacios Interiores de la Universidad Técnica de Ambato , Revista Técnica "energía": Vol. 15 Núm. 1 (2018): Revista Técnica "energía", Edición No. 15
- Rubén Nogales, Jesús Guamán, Carlos Vargas, Alberto Ríos, Plataforma Cloud de Monitoreo del Funcionamiento de una Electrolinera Solar Fotovoltaica , Revista Técnica "energía": Vol. 15 Núm. 1 (2018): Revista Técnica "energía", Edición No. 15
- Luis Bonilla, Raúl Cubillo, Determinación de límites de seguridad estática de ángulo en el SNI a partir de mediciones sincrofasoriales , Revista Técnica "energía": Vol. 15 Núm. 1 (2018): Revista Técnica "energía", Edición No. 15
- Alberto Ríos, Jesús Guamán, Carlos Vargas, Análisis de la Implementación de una Estrategia de Reducción del Consumo Energético en el Sector Residencial del Ecuador: Evaluación del Impacto en la Matriz Energética , Revista Técnica "energía": Vol. 15 Núm. 1 (2018): Revista Técnica "energía", Edición No. 15
- Sandra Bastidas, Hugo Arcos , Despacho Económico del Sistema Híbrido de las Islas Santa Cruz y Baltra Incorporando la Aleatoriedad de Potencia de los Sistemas Eólico y Solar Fotovoltaico , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
Artículos más leídos del mismo autor/a
- Cristian Fabara, Diego Maldonado, Mauricio Soria, Antonio Tovar, Predicción de la Generación para un Sistema Fotovoltaico mediante la aplicación de técnicas de Minería de Datos , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
El presente artículo busca analizar la seguridad estática del sistema, aplicando técnicas avanzadas de minería de datos que permitan evaluar los patrones de seguridad de un sistema eléctrico de potencia en un análisis de estado estacionario ante eventos de contingencia N-1. Los datos son obtenidos a través de flujos de potencia, para efectuar simulaciones de Monte Carlo con scripts desarrollados en Python. Usando el software de simulación DIgSILENT PowerFactory se analizan 10000 escenarios, lo que permite considerar la incertidumbre del sistema según la naturaleza probabilística del mismo. Se calculan los índices de seguridad estática del sistema para clasificar los tipos de contingencias como segura, críticamente segura, insegura y altamente insegura. La minería de datos es desarrollada mediante un algoritmo programado en lenguaje Python con el cual se realiza el diseño del clasificador tipo máquina de soporte vectorial multiclase (SVM Multiclass) el cual es entrenado para determinar si una contingencia es segura o insegura. Los parámetros del SVM fueron obtenidos mediante una optimización con un algoritmo de evolución diferencial (Differential Evolution). Los resultados de la validación del clasificador demostraron que la técnica es muy efectiva para clasificar nuevas contingencias. La metodología se aplica a un sistema de prueba IEEE de 39 barras.
Visitas del artículo 1066 | Visitas PDF 401








