Metodología basada en Cadenas de Markov para la Predicción de la Demanda y Toma de Decisiones en el corto plazo. Caso de Estudio: Empresa Eléctrica Quito
Short Term Demand Forecasting methodology for Power Decision Making Based on Markov Chain. Study Case – EEQ
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- Jorge Lara, Mauricio Samper, Graciela Colomé, Predicción a corto plazo de sistemas de medición inteligentes mediante arquitecturas de aprendizaje profundo multivariable y multipaso , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Jorge Leon, Graciela Colomé, Estefanía Tapia, Identificación de Generadores Críticos ante Problemas de Estabilidad Transitoria , Revista Técnica "energía": Vol. 21 Núm. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
- Carlos Lozada, David Panchi, Wilson Sánchez, Andrés Jacho, Regresión Lineal para la Identificación del Punto de Máxima Potencia en Microrredes Híbridas Implementado en HYPERSIM , Revista Técnica "energía": Vol. 20 Núm. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- José Castro, Paúl Soto, Ruth Reategui, Tuesman Castillo, Partición de una Red Eléctrica de Distribución Aplicando Algoritmos de Agrupamiento K-means y DBSCAN , Revista Técnica "energía": Vol. 20 Núm. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- Alex Mullo, José Reinoso, Marlon Chamba, Carlos Lozada, Análisis y Caracterización de la Calidad de Energía utilizando Minería de Datos , Revista Técnica "energía": Vol. 22 Núm. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Julio Lascano, Luis Chiza, Roberth Saraguro, Carlos Quinatoa, Jessy Tapia, Estimación de la Demanda de una Estación de Carga para Vehículos Eléctricos Mediante la Aplicación de Métodos Probabilísticos , Revista Técnica "energía": Vol. 20 Núm. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- Gabriel Guañuna, Santiago Chamba, Nelson Granda, Jaime Cepeda, Diego Echeverría, Walter Vargas, Estimación del Margen de Estabilidad de Voltaje Utilizando Herramientas de Aprendizaje Automático , Revista Técnica "energía": Vol. 20 Núm. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- Wilson Brito, Santiago Chamba, Diego Echeverría, Aharon De La Torre, David Panchi, Herramienta de Identificación Paramétrica, Validación y Sintonización de Reguladores de Velocidad Mediante Algoritmos de Optimización Heurísticos , Revista Técnica "energía": Vol. 20 Núm. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- Johnny Heredia, Edy Ayala , Diseño de Sistema para la Generación de Mantenimiento Predictivo Basado en IoT e Inteligencia Artificial para Talleres de Mecánica Exprés , Revista Técnica "energía": Vol. 21 Núm. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
- Andrés Pereira, Roberth Saraguro, Carlos Quinatoa, Evaluación de Pérdidas de Potencia Activa en el Sistema Eléctrico de la Empresa eléctrica Quito (EEQ) Aplicando un Algoritmo de Optimización , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
Artículos más leídos del mismo autor/a
- Paulina Vásquez, Michelle Nieto, Roberto Sánchez, Jaime Cepeda, Propuesta metodológica para la exploración de redes de conocimiento mediante una base de datos orientada a grafos de los datos del Sistema de Gestión de Conocimiento de CENACE , Revista Técnica "energía": Vol. 17 Núm. 2 (2021): Revista Técnica "energía", Edición No. 17, ISSUE II
- José Enríquez , Carlos Del Hierro, Roberto Sánchez, David Panchi, Integración de un Sistema de Monitoreo de Condiciones Climáticas al Sistema de Gestión de Energía Nacional , Revista Técnica "energía": Vol. 17 Núm. 2 (2021): Revista Técnica "energía", Edición No. 17, ISSUE II
La investigación del presente trabajo está centrada en determinar el pronóstico de la demanda de potencia eléctrica en corto plazo. Para ello, se utilizó y se comparó los “perfiles de demanda” y la señal en tiempo real de la demanda eléctrica de la Empresa Eléctrica Quito S.A, EEQ, para llegar a determinar el perfil más esperado en el día. En este sentido, se utilizó el Modelo Oculto de Markov (Hidden Markov Model, HMM) para el pronóstico de la demanda en horizonte de tiempo de corto plazo. Para esto, primeramente se realizó un proceso de aprendizaje/entrenamiento al modelo con la base de datos Sistema de Información Validada Operativa, SIVO. Posteriormente, se realizó el proceso de descubrimiento de perfiles de demanda, que permitirá en pasos posteriores encontrar el perfil más esperado a ocurrir durante el día. La propuesta establece un “área de demanda esperada” que se convierte en una referencia que define el comportamiento de la demanda lo largo del día.
Se realizó una evaluación en un periodo de 30 días de la metodología aplicada al sistema de la EEQ, y se observó que la herramienta acierta en un 86% de los casos y el valor de demanda en tiempo real se encuentra dentro de la banda de demanda esperada.
El propósito de este trabajo es brindar una aplicación a los operadores del Sistema Nacional Interconectado, SNI, del Operador Nacional, CENACE, que permita tomar decisiones en el periodo de corto plazo optimizando los recursos de generadores existentes.
Visitas del artículo 1724 | Visitas PDF 551








