Análisis de Variables Temporales para la Predicción del Consumo Eléctrico
Análisis de Variables Temporales para la Predicción del Consumo Eléctrico
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- José Castro, Paúl Soto, Ruth Reategui, Tuesman Castillo, Partición de una Red Eléctrica de Distribución Aplicando Algoritmos de Agrupamiento K-means y DBSCAN , Revista Técnica "energía": Vol. 20 Núm. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- Graciela Colomé, Omar Ramos, Diego Echeverría, Metodología de Identificación de Modos Oscilatorios en Datos Tipo Ambiente de Mediciones PMU , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Daniel Orbe, Luis Salazar, Paúl Vásquez, Estimación y Análisis de Sensibilidad del Consumo Energético de Buses Eléctricos mediante Simulaciones Microscópicas en líneas de Transporte Público , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Diego Jiménez, Jhoao Rea, Pablo Muñoz, Gabriela Vizuete, Leonel Latacunga, Ciro Iza, Diseño y Construcción de un Medidor de Energía Digital Domiciliar , Revista Técnica "energía": Vol. 20 Núm. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- Paulo Castro, Jaime Cepeda, Análisis del Impacto de la Penetración de Energías Renovables no Gestionables en la seguridad operativa de los Sistemas Eléctricos de Potencia , Revista Técnica "energía": Vol. 22 Núm. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Julio Lascano, Luis Chiza, Roberth Saraguro, Carlos Quinatoa, Jessy Tapia, Estimación de la Demanda de una Estación de Carga para Vehículos Eléctricos Mediante la Aplicación de Métodos Probabilísticos , Revista Técnica "energía": Vol. 20 Núm. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- William Yugcha, Diego Pichoasamin, Paúl Astudillo, Comparación y Optimización del Uso de Filtro Pasivo y Activo de Potencia para Mitigar Armónicos en Redes de Distribución con Cargas no Lineal , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Carlos Molina , Vladimir Bonilla, Aplicación de la Metodología CRISP-DM en el Análisis de Gases Disueltos en Aceite Dieléctrico de Transformadores Eléctricos del Sector Eléctrico Ecuatoriano , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Josua Oña, Luis Ruales, Análisis de sobrevoltajes por impulso atmosférico en sistemas de Transmisión con discontinuidades líneas de transmisión aéreas y cables aislados, usando ATP , Revista Técnica "energía": Vol. 20 Núm. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- Sasha Palacios, Metodología para Calcular los Límites de Estabilidad Estática de Ángulo en el Sistema Nacional Interconectado (SNI) Ecuatoriano Usando el Criterio de Áreas Iguales y Mediciones Sincrofasoriales , Revista Técnica "energía": Vol. 22 Núm. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
El problema de la predicción de consumo eléctrico a corto plazo o Short Term Load Forecasting (STLF), es un tema de capital importancia para las empresas de energía en la actualidad, ya que permite un manejo más eficiente, permitiendo un mejor aprovechamiento de los equipos y recursos. La predicción de la demanda es un problema complejo, ya que está relacionada a factores económicos, climáticos, temporales, y su comportamiento varía de una sociedad a otra. Cada uno de estos factores aporta determinadas variables que pueden ser representadas de diferentes maneras, en particular las temporales. Se plantea en este trabajo la hipótesis que el método utilizado para presentar las variables temporales a un sistema de predicción de consumo eléctrico afecta los resultados. Para verificar la hipótesis planteada, consideramos diferentes métodos de representación de estas variables, aplicados al problema de predicción de valores diarios de consumo eléctrico en la provincia de Tucumán, Argentina. La división de la variable temporal en variables día, día de la semana, mes y año en forma individual para cada periodo involucrado en el problema, resultó ser el método más conveniente, obteniendo una mejora de hasta el 10,56% respecto de otros métodos considerados.
Visitas del artículo 790 | Visitas PDF 237








