Modelo Eléctrico de un Sistema Piezoeléctrico para Generación de Energía a Través de la Fuerza Aplicada en un Paso
Electrical Model of a Piezoelectric System for Generating Energy Through the Force Applied in a Step
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- Joffre Constante, Augusto Riofrío, Aharon De La Torre, Jaime Cepeda, Metodología para Modelación Estacionaria y Dinámica del S.N.I en HYPERsim, Aplicación del Modelo en Análisis de Transitorios Electromagnéticos para Sistemas de 500 kV , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- Sasha Palacios, Metodología para Calcular los Límites de Estabilidad Estática de Ángulo en el Sistema Nacional Interconectado (SNI) Ecuatoriano Usando el Criterio de Áreas Iguales y Mediciones Sincrofasoriales , Revista Técnica "energía": Vol. 22 Núm. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Diego Lojano, Juan Palacios, Flujo Óptimo de Sistemas Eléctricos de Potencia con Consideraciones Ambientales , Revista Técnica "energía": Vol. 21 Núm. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
- Jorge Lara, Mauricio Samper, Graciela Colomé, Predicción a corto plazo de sistemas de medición inteligentes mediante arquitecturas de aprendizaje profundo multivariable y multipaso , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Cristian Leiva, Vinicio Quinteros, Steven Cardenas, Optimización de Costos de Producción con el Uso Programación Lineal Entera en la Planeación de la Producción para el Control de Inventario de Materias Primas , Revista Técnica "energía": Vol. 22 Núm. 2 (2026): Revista Técnica "energía", Edición No. 22 ISSUE II
- Karina Tituana, Vanessa Guillén, Análisis de Percepción del Confort Térmico de Edificaciones Residenciales en la Ciudad de Loja basado en la Norma Ecuatoriana de Eficiencia Energética , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- José Castro, Paúl Soto, Ruth Reategui, Tuesman Castillo, Partición de una Red Eléctrica de Distribución Aplicando Algoritmos de Agrupamiento K-means y DBSCAN , Revista Técnica "energía": Vol. 20 Núm. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- Josue Ortiz, Jefferson Tayupanda, Carlos Quinatoa, Solución al problema de despacho hidrotérmico a corto plazo mediante la programación no lineal aplicada a sistemas de uno y varios nodos , Revista Técnica "energía": Vol. 20 Núm. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- Julio Lascano, Luis Chiza, Roberth Saraguro, Carlos Quinatoa, Jessy Tapia, Estimación de la Demanda de una Estación de Carga para Vehículos Eléctricos Mediante la Aplicación de Métodos Probabilísticos , Revista Técnica "energía": Vol. 20 Núm. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- Rolando Noroña, Edgar Cajas, Carlos Lozada, Marlon Chamba, Análisis de Estabilidad Transitoria Utilizando el Concepto de Inercia y Minería de Datos , Revista Técnica "energía": Vol. 22 Núm. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
Los sistemas piezoeléctricos han tomado relevancia al momento de explorar nuevos métodos de generación de energía. La deformación mecánica que se produce en un transductor piezoeléctrico al aplicar una fuerza sobre éste origina cierta cantidad de energía que puede emplearse para transformar la fuerza que ejerce una persona mediante una pisada en energía eléctrica. La eficiencia en la conversión mecánica-eléctrica del material piezoeléctrico puede reducir la dependencia de fuentes tradicionales. Sin embargo, la falta de un modelo específico limita la aplicación práctica en almacenamiento energético, aunque existen modelos teóricos su validación con modelos prácticos es casi nula. Este documento busca simular el funcionamiento del transductor piezoeléctrico PZT-51 a través de su modelo eléctrico tomando en consideración las características mecánicas, en aplicaciones de almacenamiento de energía. Para la validación del modelo generado en Simulink® se emplearon parámetros como la permitividad dieléctrica, el coeficiente piezoeléctrico y el factor de pérdida, proporcionados por el fabricante para garantizar que los resultados obtenidos se asemejan a la realidad.
Visitas del artículo 7 | Visitas PDF 1
Descargas
- [1] Z. Leí, B. X. Tian y Q. Feng. “Recolección de energía piezoeléctrica a partir de la marcha humana mediante un mecanismo de amplificación de dos etapas”. ScienceDirect. Accedido el 14 de abril de 2025. [En línea]. Disponible: https://www.sciencedirect.com/science/article/abs/pii/S0360544219318353
- [2] B. Zubair, P. Riffat Asim y Q. Faisal. “Generación de energía eléctrica utilizando material piezoeléctrico de titanato de circonato de plomo (PZT-5A) : Verificaciones analíticas, numéricas y experimentales”. Home page. Accedido el 28 de marzo de 2025. [En línea]. Disponible: https://iris.uniroma1.it/bitstream/11573/1019687/1/Elahi_Generation_2016.pdf
- [3] M. Farnsworth, A. Tiwari y R. Dorey. “Modelización, simulación y optimización de un recolector de energía piezoeléctrica”. ScienceDirect. Accedido el 9 de abril de 2025. [En línea]. Disponible: https://www.sciencedirect.com/science/article/pii/S2212827114009718
- [4] A. Kevin and S. Ordoñeez, “Modelo de circuito equivalente Butterworth Van Dyke para transductores piezoeléctricos,” CD 12360, Documento técnico interno, 24 de agosto de 2022.
- [5] J. Ibáñez García, E-STEP: Generador piezoeléctrico. Aplicación a escaleras, Proyecto Final de Carrera, Escuela Universitaria de Ingeniería Técnica Industrial de Barcelona, Universitat Politècnica de Catalunya, 2012.
- [6] A. Menéndez Melé y A. Arribalzaga Jové. “Desarrollo de un prototipo de baldosa generadora de energía eléctrica a partir de la piezoelectricidad y almacenamiento de la energia producida”. UPCommons :: Inici. Accedido el 18 de octubre de 2025. [En línea]. Disponible: https://upcommons.upc.edu/server/api/core/bitstreams/b3c5ad59-ae56-4cb6-9792-f5930bab4eaf/content
- [7] J. Cardenas Ramirez. “Configuración, material y eficiencia de sistemas piezoeléctricos para la generación de energía eléctrica”. repositorio.ucv. Accedido el 18 de octubre de 2025. [En línea]. Disponible: https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/107176/Cardenas_RJ-SD.pdf?sequence=1&isAllowed=y
- [8] N. Martínez, “Energía piezoeléctrica: Aprovechando el movimiento humano para generar electricidad,” Renovables Verdes, [En línea]. Disponible: https://www.renovablesverdes.com/energia-piezoelectrica-convierte-movimiento-humano-en-electricidad/
- [9] M. A. Salazar Lozano, L. G. Butzmann Álvarez, O. A. García Cano y M. Parra Escobedo, “Walking Energy: Generador de energía por pisada,” Tecnológico Nacional de México/Instituto Tecnológico de Durango, México, 2024. [En línea]. Disponible: https://www.eumed.net/uploads/articulos/e9f1501a443fc2252f99b6e9dce62c8a.pdf
- [10] M. Martínez Euklidiadas, “Piezoelectricidad: usando las pisadas de los ciudadanos para generar energía,” Tomorrow.City, 16 de noviembre de 2020. [En línea]. Disponible: https://www.tomorrow.city/es/piezoelectricidad-generar-energia-con-movimiento/
- [11] Starner, T., & Paradiso, J. A. (2004). Human generated power for mobile electronics. Low-power electronics design, 45, 1-35.








