Data Mining for Patterns Recognition of Power Systems Static Security Assessment with Contingency Events
Minería de Datos para Reconocimiento de Patrones en el Análisis de Seguridad Estática de Sistemas de Potencia ante Eventos de Contingencia
How to Cite
Download Citation
Show authors biography
Similar Articles
- Jorge Leon, Graciela Colomé, Estefanía Tapia, Identification of Critical Generators in Transient Stability Problems , Revista Técnica "energía": Vol. 21 No. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
- Rolando Noroña, Edgar Cajas, Carlos Lozada, Marlon Chamba, Transient Stability Analysis Using the Concept of Inertia and Data Mining , Revista Técnica "energía": Vol. 22 No. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Paulo Castro, Jaime Cepeda, Impact Analysis of Non-Dispatchable Renewable Energies Penetration in Power System Operational Security , Revista Técnica "energía": Vol. 22 No. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Carlos Lozada, David Panchi, Wilson Sánchez, Andrés Jacho, Linear Regression for the Identification of the Maximum Power Point in Hybrid Microgrids Implemented in HYPERSIM , Revista Técnica "energía": Vol. 20 No. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- José Castro, Paúl Soto, Ruth Reategui, Tuesman Castillo, Partitioning of an Electrical Distribution Systems Using K-Means and DBSCAN Clustering Algorithms , Revista Técnica "energía": Vol. 20 No. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- Julio Lascano, Luis Chiza, Roberth Saraguro, Carlos Quinatoa, Jessy Tapia, Demand Estimation for an Electric Vehicles Charging Station Through the Application of Probabilistic Methods , Revista Técnica "energía": Vol. 20 No. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- Alex Mullo, José Reinoso, Marlon Chamba, Carlos Lozada, Analysis and Characterization of Power Quality using Data Mining , Revista Técnica "energía": Vol. 22 No. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Andrés Pereira, Roberth Saraguro, Carlos Quinatoa, Evaluation of Active Power Losses in the Electrical System of the Empresa Eléctrica Quito (EEQ) Applying an Optimization Algorithm , Revista Técnica "energía": Vol. 21 No. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Wilson Sánchez, Diego Echeverría, Santiago Chamba, Andrés Jacho, Carlos Lozada, Economic Energy Dispatch of the Micro-Grid in the Galapagos Islands Using the Simsee Platform , Revista Técnica "energía": Vol. 21 No. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Sasha Palacios, Ecuadorian National Interconnected System (SNI) Using the Equal Area Criterion and Synchrophasor Measurements , Revista Técnica "energía": Vol. 22 No. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Cristian Fabara, Diego Maldonado, Mauricio Soria, Antonio Tovar, Prediction of Generation in a Photovoltaic System through the application of Data Mining techniques , Revista Técnica "energía": Vol. 16 No. 1 (2019): Revista Técnica "energía", Edición No. 16
This paper analyzes the static security of the power system, applying advanced data mining techniques that allow the evaluation of safety patterns of a power electrical system in a steady state analysis with contingency events N-1. Data are obtained through power flows, to perform Monte Carlo simulations with scripts developed in Python. Using the DIgSILENT PowerFactory simulation software, 10,000 scenarios are analyzed, which allows us to consider the uncertainty of the system according to the probabilistic nature of the system. The static security indexes of the system are calculated to
classify the types of contingencies as safe, critically safe, insecure and highly unsafe. Data mining is developed by means of an algorithm programmed in Python language with which the design of the multiclass support vector machine classifier (SVM Multiclass) is carried out. It is trained to determine if a contingency is safe or unsafe. The parameters of the
SVM were obtained through an optimization with a differential evolution algorithm (Differential Evolution). The results of the validation of the classifier showed that the technique is very effective in classifying new contingencies. The methodology is applied to an IEEE test system of 39 buses.
Article visits 976 | PDF visits 392















