Minería de Datos para Reconocimiento de Patrones en el Análisis de Seguridad Estática de Sistemas de Potencia ante Eventos de Contingencia
Data Mining for Patterns Recognition of Power Systems Static Security Assessment with Contingency Events
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- Wilson Brito, Santiago Chamba, Diego Echeverría, Aharon De La Torre, David Panchi, Herramienta de Identificación Paramétrica, Validación y Sintonización de Reguladores de Velocidad Mediante Algoritmos de Optimización Heurísticos , Revista Técnica "energía": Vol. 20 Núm. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- Jorge Lara, Mauricio Samper, Graciela Colomé, Predicción a corto plazo de sistemas de medición inteligentes mediante arquitecturas de aprendizaje profundo multivariable y multipaso , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Flavio Villacrés, Alexis Torres, Marlo Chamba, Carlos Lozada, Estrategia Adaptativa para el Alivio de Carga en Sistemas Eléctricos de Potencia Basada en Regresión Lineal , Revista Técnica "energía": Vol. 22 Núm. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Daniel Orbe, Luis Salazar, Paúl Vásquez, Estimación y Análisis de Sensibilidad del Consumo Energético de Buses Eléctricos mediante Simulaciones Microscópicas en líneas de Transporte Público , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Carlos Molina , Vladimir Bonilla, Aplicación de la Metodología CRISP-DM en el Análisis de Gases Disueltos en Aceite Dieléctrico de Transformadores Eléctricos del Sector Eléctrico Ecuatoriano , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Gabriel Guañuna, Santiago Chamba, Nelson Granda, Jaime Cepeda, Diego Echeverría, Walter Vargas, Estimación del Margen de Estabilidad de Voltaje Utilizando Herramientas de Aprendizaje Automático , Revista Técnica "energía": Vol. 20 Núm. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- Alex Villamarín Jácome, Miguel Saltos, Juan Echever, Dimensionamiento Óptimo de Sistemas Fotovoltaicos y Baterías en Entornos Residenciales para Reducir la Dependencia de la Infraestructura Eléctrica Centralizada , Revista Técnica "energía": Vol. 21 Núm. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
- Edison Novoa, Gabriel Salazar Yépez, Eliana Buitrón, Gabriel Salazar Pérez, Propuesta de una Metodología para la Focalización del Subsidio Eléctrico “Tarifa De La Dignidad” en Usuarios Residenciales de las Empresas Eléctricas del Ecuador , Revista Técnica "energía": Vol. 20 Núm. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- Graciela Colomé, Omar Ramos, Diego Echeverría, Metodología de Identificación de Modos Oscilatorios en Datos Tipo Ambiente de Mediciones PMU , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Daniels Mendoza, Isai Nina , Edwin Cuadros, Análisis de una Planta Piloto Geotérmica con Ciclo Binario de Media Entalpia, Ubinas, Moquegua. , Revista Técnica "energía": Vol. 21 Núm. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
Artículos más leídos del mismo autor/a
- Cristian Fabara, Diego Maldonado, Mauricio Soria, Antonio Tovar, Predicción de la Generación para un Sistema Fotovoltaico mediante la aplicación de técnicas de Minería de Datos , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
El presente artículo busca analizar la seguridad estática del sistema, aplicando técnicas avanzadas de minería de datos que permitan evaluar los patrones de seguridad de un sistema eléctrico de potencia en un análisis de estado estacionario ante eventos de contingencia N-1. Los datos son obtenidos a través de flujos de potencia, para efectuar simulaciones de Monte Carlo con scripts desarrollados en Python. Usando el software de simulación DIgSILENT PowerFactory se analizan 10000 escenarios, lo que permite considerar la incertidumbre del sistema según la naturaleza probabilística del mismo. Se calculan los índices de seguridad estática del sistema para clasificar los tipos de contingencias como segura, críticamente segura, insegura y altamente insegura. La minería de datos es desarrollada mediante un algoritmo programado en lenguaje Python con el cual se realiza el diseño del clasificador tipo máquina de soporte vectorial multiclase (SVM Multiclass) el cual es entrenado para determinar si una contingencia es segura o insegura. Los parámetros del SVM fueron obtenidos mediante una optimización con un algoritmo de evolución diferencial (Differential Evolution). Los resultados de la validación del clasificador demostraron que la técnica es muy efectiva para clasificar nuevas contingencias. La metodología se aplica a un sistema de prueba IEEE de 39 barras.
Visitas del artículo 1066 | Visitas PDF 401








