Skip to main navigation menu Skip to main content Skip to site footer

Solution to the short-term hydrothermal dispatch problem through nonlinear programming applied to single and multi-node systems

Solución al problema de despacho hidrotérmico a corto plazo mediante la programación no lineal aplicada a sistemas de uno y varios nodos




Section
SISTEMAS ELÉCTRICOS DE POTENCIA

How to Cite
Solution to the short-term hydrothermal dispatch problem through nonlinear programming applied to single and multi-node systems. (2024). Revista Técnica "energía", 20(2), PP. 11-20. https://doi.org/10.37116/revistaenergia.v20.n2.2024.609

Dimensions
PlumX

How to Cite

Solution to the short-term hydrothermal dispatch problem through nonlinear programming applied to single and multi-node systems. (2024). Revista Técnica "energía", 20(2), PP. 11-20. https://doi.org/10.37116/revistaenergia.v20.n2.2024.609

Download Citation

Josue Ortiz
Jefferson Tayupanda
Carlos Quinatoa

Similar Articles

1-10 of 77

You may also start an advanced similarity search for this article.

This research proposes two models for the problem of short-term economic dispatch of electrical power systems through nonlinear programming (NLP). The problems raised will be resolved through the cost function of the classic economic dispatch where thermal and hydraulic generation plants are considered to obtain the electrical power generated in each of the nodes, the methodology will be used for a short-term period. 24 hours with different hourly demand, in the first instance the model will be developed for a single node with cascade reservoirs, while the second case will be developed in the 14 IEEE bus system, brief modifications are made to the original model in order to include hydraulic generation units. The non-linear programming shows satisfactory results, complying with the operational restrictions implemented in the mathematical model, in addition there are reductions in thermal generation which means lower cost, the first model is validated through bibliography obtaining an operating cost of $904,990 while in the The second model has a total cost of $129,800.


Article visits 1016 | PDF visits 478


Downloads

Download data is not yet available.
  1. J. A. Oscullo and S. Pilaquinga, “Despacho Económico de Unidades Térmicas con Funciones Lineales de Costo utilizando el Algoritmo de la Luciérnaga,” Rev. Politécnica, vol. 50, no. 1, pp. 35–42, 2022, doi: 10.33333/rp.vol50n1.04.
  2. D. A. Dias Tamayo, A. Garcés Ruiz, and D. Gonzalez Ocampo, “Despacho económico en sistemas de potencia considerando estabilidad transitoria,” Rev. Tecnura, vol. 21, no. 51, p. 27, 2017, doi: 10.14483/udistrital.jour.tecnura.2017.1.a02.
  3. O. De Antonio Suárez, “Una aproximación a la heurística y metaheurísticas,” Univ. Antonio Nariño, p. 8, 2011.
  4. H. Cardona, M. A. Burgos, J. W. González, I. A. Isaac, and G. J. López, “Aplicación en Matlab para la Programación del Despacho Económico Hidrotérmico,” Rev. Investig. Apl., vol. 6, no. 2, pp. 42–53, 2012.
  5. M. Barroso and M. López, “Despacho económico utilizando programación lineal, con pasos controlados,” Ing. Energética, vol. 24, no. 2, pp. 71–76, 2003.
  6. M. López Pérez and M. Barroso Baeza, “Despacho económico con restricciones de seguridad,” Ing. Energética, vol. 23, no. 3, p. 71 a la 74, 2002.
  7. G. Zahara, T. Thomas, and S. Amanda, “Comparing classical and metaheuristic methods to optimize multi-objective operation planning of district energy systems considering uncertainties,” Appl. Energy, vol. 321, 2022.
  8. S. Bandaru and K. Deb, “Metaheuristic techniques,” Decis. Sci. Theory Pract., pp. 693–749, 2016, doi: 10.1201/9781315183176.
  9. P. E. Oñate Y and J. M. Ramírez A, “Solución Al Problema De Coordinación Hidrotérmica De Corto Plazo Por Algoritmos Genéticos,” Rev. Técnica “Energía,” vol. 5, no. 1, pp. 39–47, 2009, doi: 10.37116/revistaenergia.v5.n1.2009.239.
  10. D. Asija, K. Soni, S. Sinh, and V. . Yadav, “Assessment of congestion condition in transmission line for IEEE 14 bus system using D.C. optimal power flow,” India Int. Conf. Power Electron., vol. 7th, pp. 1–6, 2016, doi: 10.1109/IICPE.2016.8079332.
  11. H. Raafat and G. Ibrahim, “Impact of Demand Response and Battery Energy Storage System on Electricity Markets,” 2017.
  12. S. Mohammad, Y. Hatim, and L. Zuyi, Market Operations in Electric Power Systems. 2003.
  13. S. S. Mukrimaa et al., Optimization of power System Operation, vol. 6, no. August. 2016.
  14. Y. Weijia, Hydropower Plants and Power Systems: Dynamic Processes and Control for Stable and Effiencient Operation. 2019.
  15. A. Soroudi, Power system optimization modeling in GAMS. 2017. doi: 10.1007/978-3-319-62350-4.
  16. Navneet Kaur, Maninder, and Inderjeet Singh, “Overview of Economic Load Dispatch Problem in Power System,” Int. J. Eng. Res., vol. V4, no. 07, pp. 1050–1054, 2015, doi: 10.17577/ijertv4is070380.
  17. J. Expósito, Antonio Gómez Martinez Ramos, “Sistemas Eléctricos de Potencia,” p. 282, 2008.
  18. B. R. Castellanos, “Determinación de límites de transmisión en sistemas eléctricos de potencia,” Ing. Investig. y Tecnol., 2014.
  19. J. Tarapuez and G. Barrera, GAMS Aplicado a las Ciencias económicas. 2010. [Online]. Available: http://www.fce.unal.edu.co/uifce/proyectos-de-estudio/pdf/GAMS aplicado a las Ciencias Economicas
Sistema OJS 3.4.0.9 - Metabiblioteca |