Skip to main navigation menu Skip to main content Skip to site footer

Evaluation of the Energy Storage Capacity of Cocoa Lignocellulosic Material

Evaluación de la Capacidad de Almacenamiento de Energía del Material Lignocelulósico de Cacao




Section
EFICIENCIA ENERGÉTICA

How to Cite
Evaluation of the Energy Storage Capacity of Cocoa Lignocellulosic Material. (2024). Revista Técnica "energía", 21(1), PP. 143-152. https://doi.org/10.37116/revistaenergia.v21.n1.2024.624

Dimensions
PlumX

How to Cite

Evaluation of the Energy Storage Capacity of Cocoa Lignocellulosic Material. (2024). Revista Técnica "energía", 21(1), PP. 143-152. https://doi.org/10.37116/revistaenergia.v21.n1.2024.624

Download Citation

Marco Rosero
Morayma Muñoz
Jessenia Ayala
Angela García
Antonio Marcilla
Carla Zambonino
Najhely García

Similar Articles

1-10 of 50

You may also start an advanced similarity search for this article.

The purpose of this study is to determine the energy storage capacity of the material obtained from cocoa husks in a capacitor configuration. The lignocellulosic material comes from Ecuadorian cocoa harvests used in agro-industrial processes. Analysis of the volatiles generated during instant pyrolysis was conducted using GC/MS technique. Additionally, a comparison of the capacitor with two different electrolytes was made: sulfuric acid (H2SO4) and sodium chloride (NaCl). The material processing involved carbonization and chemical activation processes, carried out in a pyrolysis reactor under an inert nitrogen (N2) atmosphere at a heating rate of 20 °C min-1, and activated at 850 °C in the same atmosphere for 4 hours. Electrodes were prepared from this material and tested using cyclic voltammetry to assess energy storage at different scan rates for five cycles. The results of the GC/MS analysis and cyclic voltammetry demonstrated that the prepared secondary raw material can be used to obtain high-value added products. The main identified volatile compounds include phenols, acetic acid, and alcohols. The maximum potential was 1,1 kW kg-1 with NaCl electrolyte, and the maximum durability was achieved with H2SO4 electrolyte with a power of 0,29 kW kg-1; these values were obtained at a scan rate of 100 mV s-1.


Article visits 1086 | PDF visits 317


Downloads

Download data is not yet available.
  1. A. Avadí, “Environmental assessment of the Ecuadorian cocoa value chain with statistics-based LCA,” Int J Life Cycle Assess, vol. 28, no. 11, pp. 1495–1515, Nov. 2023, doi: 10.1007/s11367-023-02142-4.
  2. Ministerio de Agricultura y Ganadería, “Informe Macroeconómico Agropecuario,” INEN. Accessed: Mar. 10, 2024. [Online]. Available: http://sipa.agricultura.gob.ec/index.php/cifras-agroproductivas.
  3. Gerencia de Estudios Cambiarios BCE, La Actividad Petrolera en Ecuador en la Década de los 80. Quito: Banco Central del Ecuador, 1990.
  4. Instituto Nacional de Preinversión, Atlas bioenergético de la República del Ecuador. Quito: Esin Consultora S.A., 2014.
  5. H. Hosseinzadeh-Bandbafha and M. Kiehbadroudinezhad, “Environmental Impacts of Chocolate Production and Consumption,” in Trends in Sustainable Chocolate Production, Cham: Springer International Publishing, 2022, pp. 229–258. doi: 10.1007/978-3-030-90169-1_7.
  6. G. A. Enrríquez, Curso sobre el cultivo de cacao. Turrialba: CATIE, 1985.
  7. International Cocoa Organization, “ICCO,” https://www.icco.org/.
  8. INEC, “Encuesta de Superficie y Producción Agropecuaria Continua,” 2022. Accessed: Mar. 24, 2024. [Online]. Available: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_agropecuarias/espac/espac_2022/PPT_%20ESPAC_%202022_04.pdf
  9. N. Müller, C. Tessini, C. Segura, and A. Berg, “Pirólisis rápida de biomasa,” Chile, 2013. [Online]. Available: https://www.researchgate.net/publication/309733974
  10. M. Kumar, S. N. Upadhyay, and P. K. Mishra, “Pyrolysis of Sugarcane (Saccharum officinarum L.) Leaves and Characterization of Products,” ACS Omega, vol. 7, no. 32, pp. 28052–28064, Aug. 2022, doi: 10.1021/acsomega.2c02076.
  11. N. Acosta, J. De Vrieze, V. Sandoval, D. Sinche, I. Wierinck, and K. Rabaey, “Cocoa residues as viable biomass for renewable energy production through anaerobic digestion,” Bioresour Technol, vol. 265, pp. 568–572, Oct. 2018, doi: 10.1016/j.biortech.2018.05.100.
  12. M. V. Vidal, A. Rodríguez, K. Martínez, J. Ocampo, and W. Barrios, “Potencial de residuos agroindustriales para la síntesis de Carbón Activado: una revisión,” Scientia Et Technica, Pereira, pp. 412–420, Aug. 27, 2018.
  13. Y. Yetri et al., “Synthesis of activated carbon monolith derived from cocoa pods for supercapacitor electrodes application,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp. 1–15, Aug. 2020, doi: 10.1080/15567036.2020.1811433.
  14. L. D. Ramírez-Valencia, F. E. López-Suárez, L. R. Conde, Esther. Bailón-García, A. Bueno-López, and A. F. Perez-Cadenas, “Cocoa husk as precursor of carbonaceous materials for supercapacitors electrodes,” Journal of Electroanalytical Chemistry, vol. 963, p. 118325, Jun. 2024, doi: 10.1016/j.jelechem.2024.118325.
  15. A. M. García et al., “Monolithic mesoporous graphitic composites as super capacitors: from Starbons to Starenes®,” J Mater Chem A Mater, vol. 6, no. 3, pp. 1119–1127, 2018, doi: 10.1039/C7TA09338A.
  16. G. Diossa, C. D. Castro, Z. Zapata-Benabithe, and G. Quintana, “Evaluación de la capacidad de almacenamiento de energía en xerogeles de carbono activados obtenidos a partir de lignina,” 2017, doi: 10.18273/revion.v30n2-2017002.
  17. C. Diaz Arriaga, D. E. Pacheco Catalán, J. M. Bass López, and J. Uribe Calderón, “Capacitor electroquímico basado en PPy-(SO4)2−: efecto del dióxido de manganeso como templete reactivo en las propiedades electroquímicas,” Mar. 2021.
  18. M. J. Mostazo-López, R. Ruiz-Rosas, E. Morallón, and D. Cazorla-Amorós, “Nitrogen doped superporous carbon prepared by a mild method. Enhancement of supercapacitor performance,” Int J Hydrogen Energy, vol. 41, no. 43, pp. 19691–19701, Nov. 2016, doi: 10.1016/j.ijhydene.2016.03.091.
  19. Y. Yetri, Mursida, D. Dahlan, Muldarisnur, E. Taer, and Febrielviyenti, “Analysis of Characteristics of Activated Carbon from Cacao (Theobroma cacao) Skin Waste for Supercapasitor Electrodes,” in IOP Conference Series: Materials Science and Engineering, IOP Publishing Ltd, Dec. 2020. doi: 10.1088/1757-899X/990/1/012023.
  20. F. Ahmad, W. M. A. W. Daud, M. A. Ahmad, and R. Radzi, “Cocoa (Theobroma cacao) shell-based activated carbon by CO 2 activation in removing of Cationic dye from aqueous solution: Kinetics and equilibrium studies,” Chemical Engineering Research and Design, vol. 90, no. 10, pp. 1480–1490, Oct. 2012, doi: 10.1016/j.cherd.2012.01.017.
Sistema OJS 3.4.0.9 - Metabiblioteca |