Modeling of DSTATCOM Devices to Improve Dynamic Voltage Stability in a Microgrid with High Penetration of Motor Loads

Main Article Content

Luis Paredes
https://orcid.org/0000-0002-1865-4913
Benjamín Serrano
https://orcid.org/0000-0001-6528-6132
Marcelo Molina
https://orcid.org/0000-0002-2617-1460

Abstract

This paper proposes and validates models of FACTS technology devices of the Synchronous Static Compensator for Distribution (DSTATCOM) type. In the first instance, a simplified DSTATCOM modeling performed through a controlled current source is presented. Subsequently, a DSTATCOM modeled through control strategies is exposed considering a PWM (Pulse-Width Modulation) converter. The proposed models of DSTATCOM devices are validated in a CIGRÉ Electrical Microgrid (MG) test system. The presence of induction motor type loads in the MG requires a considerable demand for reactive power, this causes inconveniences to maintain the Dynamic Voltage Stability (DVE). This situation is aggravated by the occurrence of failures that trigger an isolated operation of the MG. To solve these problems, a DSTATCOM device will be used. The optimal connection and location of DSTATCOM in the MG is done through an exhaustive search algorithm, considering the premise of the best performance in terms of DVE made through dynamic simulations in PowerFactory DIgSILENT. Comparatively, the results obtained for the two models performed are presented, showing the improvement of the DVE in the isolated operation of the MG with both models. Depending on the detail and scope of the studies in the MG system, you can choose between the developed DSTATCOM models. All details of models, control diagrams and data of DSTATCOM devices are provided in this document.

Downloads

Download data is not yet available.

Article Details

How to Cite
Paredes, L., Serrano, B., & Molina, M. (2020). Modeling of DSTATCOM Devices to Improve Dynamic Voltage Stability in a Microgrid with High Penetration of Motor Loads. Revista Técnica "energía", 17(1), PP. 32–42. https://doi.org/10.37116/revistaenergia.v17.n1.2020.400
Section
SISTEMAS ELÉCTRICOS DE POTENCIA
Author Biographies

Luis Paredes

Nació en Quito, Ecuador en 1987. Recibió su título de Ingeniero Eléctrico de la Escuela Politécnica Nacional en 2012 y de Magíster en Gestión de Energías en 2016. Además, ha realizado varios cursos y especializaciones en temáticas de energía eléctrica en Estados Unidos, China, Perú, Chile y Brasil. Su experiencia profesional ha sido desarrollada en varias empresas e instituciones del sector eléctrico y energético del Ecuador. Actualmente es candidato a Doctor en Ingeniería Eléctrica (Ph.D.) del Instituto de Energía Eléctrica (IEE) de la Universidad Nacional de San Juan (UNSJ) en Argentina. Sus campos de investigación están relacionados con: Resiliencia de los Sistemas Eléctricos, Estabilidad y Control en Microrredes, FACTS, Movilidad Eléctrica, Energías Renovables y Eficiencia Energética.

Benjamín Serrano, Universidad Nacional de San Juan - CONICET - IEE

Nació en San Juan, Argentina en 1955. Recibió su título de Ingeniero Electromecánico en la Universidad Nacional de San Juan (UNSJ), Argentina en 1981. Obtuvo su título de Doctor en Ingeniería Eléctrica en el Instituto de Energía Eléctrica (IEE) de la UNSJ, Argentina en 2017. Desde 2020 se desempeña como Vicedirector del Instituto de Energía Eléctrica (IEE) de la UNSJ-CONICET. Actualmente desarrolla sus tareas docentes, de investigación y transferencia en temáticas relacionadas con la Programación Óptima de la Operación de los Sistemas Eléctricos de Potencia, considerando el Control de Tensiones y Suministro de Potencia Reactiva.

Marcelo Molina, Universidad Nacional de San Juan - CONICET - IEE

Es profesor titular de Electrónica de Potencia, Energías Renovables y Redes Eléctricas Inteligentes en la Universidad Nacional de San Juan (UNSJ), Argentina. Desde 2019 se desempeña como Director del Instituto de Energía Eléctrica (IEE) de la UNSJ-CONICET. El Dr. Molina recibió el título de Ingeniero Electrónico de la Universidad Nacional de San Juan, Argentina en 1997 y su Ph.D. de la misma universidad en 2004. Sus actividades de investigación se centran en el modelado, análisis y control de sistemas eléctricos de potencia, electrónica de potencia, tecnologías de microrredes, redes inteligentes y la aplicación de almacenamiento de energía.

References

[1] N. Mahdavi, S. Najafi, and N. Bizon, Power Systems Resilience. 2019.
[2] L. A. Paredes, B. R. Serrano, and M. G. Molina, “Microgrids ─ a Methodological Review in the Current Context of Electric Systems,” CIEEPI - Rev. del Col. Ing. Eléctricos y Electrónicos Pichincha, no. 49, 2019.
[3] K. P. Schneider, F. K. Tuffner, M. A. Elizondo, C. C. Liu, Y. Xu, and D. Ton, “Evaluating the Feasibility to Use Microgrids as a Resiliency Resource,” IEEE Trans. Smart Grid, vol. 8, no. 2, pp. 687–696, 2017.
[4] D. E. Olivares et al., “Trends in microgrid control,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905–1919, 2014.
[5] J. Guerrero et al., “Distributed generation: Toward a new energy paradigm,” IEEE Ind. Electron. Mag., vol. 4, no. 1, pp. 52–64, 2010.
[6] L. A. Paredes, B. R. Serrano, and M. G. Molina, “Energy Management in Isolated Microgrids of the Ecuadorian Amazon Region,” in 3er Simposio Ibero-Americano en Microrredes Inteligentes con Integración de Energías Renovables, 2019.
[7] F. Katiraei, M. R. Iravani, and P. W. Lehn, “Micro-grid autonomous operation during and subsequent to islanding process,” IEEE Trans. Power Deliv., vol. 20, no. 1, pp. 248–257, 2005.
[8] IEEE PES Industry Technical Support Task Force, “Impact of IEEE 1547 Standard on Smart Inverters,” 2018.
[9] A. Khadem Abbasi, M. W. B. Muatafa, and A. S. B. Mokhtar, “Small signal stability analysis of rectifier-inverter fed induction motor drive for microgrid applications,” IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, pp. 1015–1019, 2011.
[10] D. Wu, H. Wu, and H. Dongt, “Influence of induction motor starting on microgrid,” Asia-Pacific Power Energy Eng. Conf. APPEEC, vol. 2018-Octob, pp. 376–381, 2018.
[11] N. Afrin, F. Yang, J. Lu, and M. Islam, “Impact of induction motor load on the dynamic voltage stability of microgrid,” ANZCC 2018 - 2018 Aust. New Zeal. Control Conf., pp. 397–402, 2018.
[12] W. Freitas, A. Morelato, W. Xu, and F. Sato, “Impacts of AC generators and DSTATCOM devices on the dynamic performance of distribution systems,” IEEE Trans. Power Deliv., vol. 20, no. 2 II, pp. 1493–1501, 2005.
[13] T. Samad and A. M. Annaswamy, “Controls for Smart Grids: Architectures and Applications,” Proc. IEEE, vol. 105, no. 11, pp. 2244–2261, 2017.
[14] L. A. Paredes, B. R. Serrano, and M. G. Molina, “Nuevo Paradigma de los Sistemas Eléctricos: Generación Distribuida y Microrredes Eléctricas un Vínculo de Accesibilidad a la Electricidad en América Latina y el Caribe,” ENERLAC, vol. 3, 2020.
[15] M. S. Mahmoud and F. M. AL-Sunni, Control and Optimization of Distributed Generation Systems. 2015.
[16] G. B. Gharehpetian and S. M. M. Agah, Distributed Generation Systems: Design, Opearation and Grid Integration. 2017.
[17] E. A. Tapia, J. D. Pinzón, and D. G. Colomé, “Load Dynamic Impact on Short-Term Voltage Stability,” in 2019 FISE-IEEE/CIGRE Conference - Living the energy Transition (FISE/CIGRE), 2019.
[18] A. A. Edris et al., “Proposed terms and definitions for Flexible AC Transmission System (FACTS),” IEEE Trans. Power Deliv., vol. 12, no. 4, pp. 1848–1853, 1997.
[19] L. Gyugyi, R. A. Otto, and T. H. Putman, “Principles and applications of static, thyristor-controlled shunt compensators,” IEEE Trans. Power Appar. Syst., vol. PAS-97, no. 5, pp. 1935–1945, 1978.
[20] N. G. Hingoranl, L. Gyugyi, and M. E. El-Hawary, Understanding FACTS: Concepts and technology of flexible ac transmission systems. 1999.
[21] L. A. Paredes, B. R. Serrano, and M. G. Molina, “FACTS Technology to Improve the Operation of Resilient Microgrids,” in 2019 FISE-IEEE/CIGRE Conference - Living the Energy Transition (FISE/CIGRE), 2019, pp. 1–7.
[22] F. M. Gonzalez-Longatt and J. L. Rueda, PowerFactory Aplications for Power System Analysis. Springer, 2014.
[23] S. Houbing, S. Ravi, S. Tmim, and J. Sabina, Smart Cities, no. 10. Wiley, 2017.
[24] L. A. Paredes, B. R. Serrano, and M. G. Molina, “Voltage Stability Improvement with a DSTATCOM in a Microgrid Integrated by DG Solar Photovoltaic and Conventional,” Rev. Técnica “energía,” vol. 16, no. II, 2020.
[25] R. B. Prada, “Voltage stability and thermal limit: Constraints on the maximum loading of electrical energy distribution feeders,” IEE Proc. - Gener. Transm. Distrib., vol. 145, no. ii, pp. 573–577, 1998.
[26] P. Coelho, M. Gomes, and C. Moreira, Microgrids Design and Implementation. 2019.
[27] Y. Xu, C.-C. Liu, K. Schneider, F. Tuffner, and D. Ton, “Microgrids for Service Restoration to Critical Load in a Resilient Distribution System,” IEEE Trans. Smart Grid, vol. 9, no. 1, pp. 1–1, 2016.
[28] J. Hossain and H. R. Pota, Robust Control for Grid Voltage Stability: High Penetration of Renewable Energy. 2014.