Metodología basada en Cadenas de Markov para la Predicción de la Demanda y Toma de Decisiones en el corto plazo. Caso de Estudio: Empresa Eléctrica Quito
Short Term Demand Forecasting methodology for Power Decision Making Based on Markov Chain. Study Case – EEQ
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- Edison Andrade, Determinación de Ponderaciones para Líneas de Transmisión del Sistema Nacional Interconectado para la Función Análisis de Contingencias del Sistema Network Manager de Abb Inc , Revista Técnica "energía": Vol. 2 Núm. 1 (2006): Revista Técnica "energía", Edición No. 2
- Diego Jijón, Jessica Constante, Geovanna Villacreses, Tania Guerrero, Estimación del rendimiento de aerogeneradores de 2 MW en el Ecuador: Potencial Eolo-Eléctrico , Revista Técnica "energía": Vol. 15 Núm. 1 (2018): Revista Técnica "energía", Edición No. 15
- Alberto Rios, Diego Taipe, Manuel Otorongo, Optimización del Consumo Eléctrico de los Sistemas de Iluminación en Espacios Interiores de la Universidad Técnica de Ambato , Revista Técnica "energía": Vol. 15 Núm. 1 (2018): Revista Técnica "energía", Edición No. 15
- Rubén Nogales, Jesús Guamán, Carlos Vargas, Alberto Ríos, Plataforma Cloud de Monitoreo del Funcionamiento de una Electrolinera Solar Fotovoltaica , Revista Técnica "energía": Vol. 15 Núm. 1 (2018): Revista Técnica "energía", Edición No. 15
- Luis Bonilla, Raúl Cubillo, Determinación de límites de seguridad estática de ángulo en el SNI a partir de mediciones sincrofasoriales , Revista Técnica "energía": Vol. 15 Núm. 1 (2018): Revista Técnica "energía", Edición No. 15
- Alberto Ríos, Jesús Guamán, Carlos Vargas, Análisis de la Implementación de una Estrategia de Reducción del Consumo Energético en el Sector Residencial del Ecuador: Evaluación del Impacto en la Matriz Energética , Revista Técnica "energía": Vol. 15 Núm. 1 (2018): Revista Técnica "energía", Edición No. 15
- Sandra Bastidas, Hugo Arcos , Despacho Económico del Sistema Híbrido de las Islas Santa Cruz y Baltra Incorporando la Aleatoriedad de Potencia de los Sistemas Eólico y Solar Fotovoltaico , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
- A. R. Guamán, P. M. Pozo, I. A. Pozo, N. A. Pozo, Diseño e Implementación de una (PMU) de baja potencia para Sistemas Trifásicos de Distribución bajo la norma IEEE C37.118.1 , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
- Mauricio Santiago Soria Colina, Antonio Tovar, Diego Maldonado, Cristian Fabara, Minería de Datos para Reconocimiento de Patrones en el Análisis de Seguridad Estática de Sistemas de Potencia ante Eventos de Contingencia , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
- Washington Garzón, Wilmer Gamboa, Tecnología Facts para el Control Óptimo de Potencia , Revista Técnica "energía": Vol. 2 Núm. 1 (2006): Revista Técnica "energía", Edición No. 2
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
Artículos más leídos del mismo autor/a
- Paulina Vásquez, Michelle Nieto, Roberto Sánchez, Jaime Cepeda, Propuesta metodológica para la exploración de redes de conocimiento mediante una base de datos orientada a grafos de los datos del Sistema de Gestión de Conocimiento de CENACE , Revista Técnica "energía": Vol. 17 Núm. 2 (2021): Revista Técnica "energía", Edición No. 17, ISSUE II
- José Enríquez , Carlos Del Hierro, Roberto Sánchez, David Panchi, Integración de un Sistema de Monitoreo de Condiciones Climáticas al Sistema de Gestión de Energía Nacional , Revista Técnica "energía": Vol. 17 Núm. 2 (2021): Revista Técnica "energía", Edición No. 17, ISSUE II
La investigación del presente trabajo está centrada en determinar el pronóstico de la demanda de potencia eléctrica en corto plazo. Para ello, se utilizó y se comparó los “perfiles de demanda” y la señal en tiempo real de la demanda eléctrica de la Empresa Eléctrica Quito S.A, EEQ, para llegar a determinar el perfil más esperado en el día. En este sentido, se utilizó el Modelo Oculto de Markov (Hidden Markov Model, HMM) para el pronóstico de la demanda en horizonte de tiempo de corto plazo. Para esto, primeramente se realizó un proceso de aprendizaje/entrenamiento al modelo con la base de datos Sistema de Información Validada Operativa, SIVO. Posteriormente, se realizó el proceso de descubrimiento de perfiles de demanda, que permitirá en pasos posteriores encontrar el perfil más esperado a ocurrir durante el día. La propuesta establece un “área de demanda esperada” que se convierte en una referencia que define el comportamiento de la demanda lo largo del día.
Se realizó una evaluación en un periodo de 30 días de la metodología aplicada al sistema de la EEQ, y se observó que la herramienta acierta en un 86% de los casos y el valor de demanda en tiempo real se encuentra dentro de la banda de demanda esperada.
El propósito de este trabajo es brindar una aplicación a los operadores del Sistema Nacional Interconectado, SNI, del Operador Nacional, CENACE, que permita tomar decisiones en el periodo de corto plazo optimizando los recursos de generadores existentes.
Visitas del artículo 1714 | Visitas PDF 550








