Minería de Datos para Reconocimiento de Patrones en el Análisis de Seguridad Estática de Sistemas de Potencia ante Eventos de Contingencia
Data Mining for Patterns Recognition of Power Systems Static Security Assessment with Contingency Events
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- Kléber Vásquez, Implementación del Sistema de Registradores Automáticos de Perturbaciones en el Sistema Nacional de Transmision , Revista Técnica "energía": Vol. 4 Núm. 1 (2008): Revista Técnica "energía", Edición No. 4
- Franklin Chimarro, Víctor Hugo Hinojosa, ANÁLISIS Y DETERMINACIÓN DE TIEMPOS DE RECIERRE PARA LÍNEAS DEL SISTEMA NACIONAL DE TRANSMISIÓN DEL ECUADOR EN 138 kV , Revista Técnica "energía": Vol. 4 Núm. 1 (2008): Revista Técnica "energía", Edición No. 4
- Paúl Vásquez, Alberto Vargas, Manejo de Riesgo en Planes de Expansión de Transmisión Incorporando Flexibilidad a Través de Inversiones en Generación Distribuida , Revista Técnica "energía": Vol. 4 Núm. 1 (2008): Revista Técnica "energía", Edición No. 4
- Christian Erazo, ANÁLISIS TÉCNICO AL PLAN DE EXPANSIÓN DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA A NIVEL DE 69 kV , Revista Técnica "energía": Vol. 4 Núm. 1 (2008): Revista Técnica "energía", Edición No. 4
- Roberto Barba, Wilmer Gamboa , Estudio para la Actualización y Mejora de la Metodología de Evaluación de la Calidad de Servicio del Sni , Revista Técnica "energía": Vol. 4 Núm. 1 (2008): Revista Técnica "energía", Edición No. 4
- Víctor Hinojosa, Wladimir Llanos, Pronóstico de Demanda para Sistemas de Suministro de Energía Eléctrica Utilizando Algoritmos Evolutivos y Razonamiento Inductivo Fuzzy – Desarrollo de la Plataforma Gráfica Merlyn - 2008 , Revista Técnica "energía": Vol. 4 Núm. 1 (2008): Revista Técnica "energía", Edición No. 4
- Víctor Hinojosa, Lorena Herrera, Pronóstico de Demanda de Muy Corto Plazo Utilizando Razonamiento Inductivo Fuzzy y Algoritmos Evolutivos , Revista Técnica "energía": Vol. 4 Núm. 1 (2008): Revista Técnica "energía", Edición No. 4
- Gabriel Salazar, María Fernanda Cardoso, Modelo para un Plan de Mantenimiento Anual Óptimo de Unidades de Generación del Sistema Nacional Interconectado Ecuatoriano , Revista Técnica "energía": Vol. 4 Núm. 1 (2008): Revista Técnica "energía", Edición No. 4
- Sonia Peña, Plan de Compras de Combustibles en Plantas de Generación Térmica del Sistema Eléctrico Ecuatoriano , Revista Técnica "energía": Vol. 4 Núm. 1 (2008): Revista Técnica "energía", Edición No. 4
- Eddison Hernández, Hugo Arcos, Análisis de Confiabilidad del Sistema de Generación Ecuatoriano en el Ámbito del Corto Plazo , Revista Técnica "energía": Vol. 3 Núm. 1 (2007): Revista Técnica "energía", Edición No. 3
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
Artículos más leídos del mismo autor/a
- Cristian Fabara, Diego Maldonado, Mauricio Soria, Antonio Tovar, Predicción de la Generación para un Sistema Fotovoltaico mediante la aplicación de técnicas de Minería de Datos , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
El presente artículo busca analizar la seguridad estática del sistema, aplicando técnicas avanzadas de minería de datos que permitan evaluar los patrones de seguridad de un sistema eléctrico de potencia en un análisis de estado estacionario ante eventos de contingencia N-1. Los datos son obtenidos a través de flujos de potencia, para efectuar simulaciones de Monte Carlo con scripts desarrollados en Python. Usando el software de simulación DIgSILENT PowerFactory se analizan 10000 escenarios, lo que permite considerar la incertidumbre del sistema según la naturaleza probabilística del mismo. Se calculan los índices de seguridad estática del sistema para clasificar los tipos de contingencias como segura, críticamente segura, insegura y altamente insegura. La minería de datos es desarrollada mediante un algoritmo programado en lenguaje Python con el cual se realiza el diseño del clasificador tipo máquina de soporte vectorial multiclase (SVM Multiclass) el cual es entrenado para determinar si una contingencia es segura o insegura. Los parámetros del SVM fueron obtenidos mediante una optimización con un algoritmo de evolución diferencial (Differential Evolution). Los resultados de la validación del clasificador demostraron que la técnica es muy efectiva para clasificar nuevas contingencias. La metodología se aplica a un sistema de prueba IEEE de 39 barras.
Visitas del artículo 1066 | Visitas PDF 401








