Modelo predictivo de recomendación para el despacho energético del complejo Hidroeléctrico Paute
Predictive recommendation model for the energy dispatch of the Paute Hydropower complex
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- Alex Villamarín Jácome, Miguel Saltos, Juan Echever, Dimensionamiento Óptimo de Sistemas Fotovoltaicos y Baterías en Entornos Residenciales para Reducir la Dependencia de la Infraestructura Eléctrica Centralizada , Revista Técnica "energía": Vol. 21 Núm. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
- Carlos Lozada, David Panchi, Wilson Sánchez, Andrés Jacho, Regresión Lineal para la Identificación del Punto de Máxima Potencia en Microrredes Híbridas Implementado en HYPERSIM , Revista Técnica "energía": Vol. 20 Núm. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- Joffre Constante, Augusto Riofrío, Aharon De La Torre, Jaime Cepeda, Metodología para Modelación Estacionaria y Dinámica del S.N.I en HYPERsim, Aplicación del Modelo en Análisis de Transitorios Electromagnéticos para Sistemas de 500 kV , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- Jorge Lara, Mauricio Samper, Graciela Colomé, Predicción a corto plazo de sistemas de medición inteligentes mediante arquitecturas de aprendizaje profundo multivariable y multipaso , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Morayma Muñoz, Napoleón Padilla, Grace Morillo, Marco Rosero, Electrocoagulación como Alternativa Sostenible para el Tratamiento de Efluentes de Refinería: Aplicación en Refinería Esmeraldas , Revista Técnica "energía": Vol. 22 Núm. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Marco Rosero, Morayma Muñoz, Jessenia Ayala, Angela García, Antonio Marcilla, Carla Zambonino, Najhely García, Evaluación de la Capacidad de Almacenamiento de Energía del Material Lignocelulósico de Cacao , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- William Yugcha, Diego Pichoasamin, Paúl Astudillo, Comparación y Optimización del Uso de Filtro Pasivo y Activo de Potencia para Mitigar Armónicos en Redes de Distribución con Cargas no Lineal , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Johnny Heredia, Edy Ayala , Diseño de Sistema para la Generación de Mantenimiento Predictivo Basado en IoT e Inteligencia Artificial para Talleres de Mecánica Exprés , Revista Técnica "energía": Vol. 21 Núm. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
- Daniels Mendoza, Isai Nina , Edwin Cuadros, Análisis de una Planta Piloto Geotérmica con Ciclo Binario de Media Entalpia, Ubinas, Moquegua. , Revista Técnica "energía": Vol. 21 Núm. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
- Luis Cruz, Cristian Gallardo, Optimización de la Captación Solar mediante un Seguidor de Doble Eje Basado en Algoritmo Astronómico en una Estación Fotovoltaica de Pequeña Escala , Revista Técnica "energía": Vol. 22 Núm. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
El presente trabajo propone aprovechar al máximo el recurso hídrico utilizado para la generación de energía eléctrica en el Ecuador. Se ha realizado tres modelos basados en inteligencia artificial para las centrales hidroeléctricas Mazar, Molino y Sopladora que pertenecen al complejo hidroeléctrico Paute-Integral. Para la implementación de los algoritmos predictivos de recomendación, primero se modeló el comportamiento de las centrales Mazar, Molino y Sopladora, posterior a lo cual se procedió a la optimización para maximizar la generación eléctrica acorde a la capacidad de las centrales hidroeléctricas y la hidrología. Finalmente, con los resultados obtenidos, se logra la maximización de la generación eléctrica para las centrales Mazar y Molino. Respecto a la central Sopladora, cuyo despacho energético depende directamente de la generación eléctrica de la central Molino, queda como punto de evaluación medir el impacto producido por la optimización de la central Molino.
Visitas del artículo 838 | Visitas PDF 480
Descargas
[1] Asamblea Nacional de la Republica del Ecuador, LEY ORGANICA DEL SERVICIO PÚBLICO DE ENERGÍA ELECTRICA, Quito, Pichincha: LEY 0 REGISTRO OFICIAL SUPLEMENTO 418, 2015.
[2] CELEC, «www.celec.gob.ec,» 31 12 2015. [En línea]. Available: www.celec.gob.ec.
[3] O. Barboza, «Automatización de previsión de demanda horaria de potencia,» Revista Científica de la UCSA, pp. 4-14, 2014.
[4] I. F. Sinaluisa Lozano, A. F. Morocho Caiza y C. Marquez Zurita, «Predicción de demanda de energía eléctrica mediante redes neuronales artificiales,» Risti, pp. 505-519, 2019.
[5] N. Huang, L. Guobo y X. Dianguo, «A Permutation Importance-Based Feature Selection Method for Short-Term Electricity Load Forecasting Using Random Forest,» Energies, 2016.
[6] J. Zalamea, «POLÍTICAS DE DESPACHO PARA EL COMPLEJO HIDROELÉCTRICO PAUTE,» ECUACIER, 2012.
[7] G. T. Doran, «There's a S.M.A.R.T. way to write management's goals and objectives,» Management Review (AMA FORUM), vol. 70, pp. 35-36, 1981.
[8] CONELEC, Estudio y Gestion de la Demanda Electrica, Quito, Provincia, 2013.
[9] ARCONEL, Estadística Anual y Multianual del Sector Eléctrico Ecuatoriano, Quito, Pichincha, 2018.
[10] CELEC EP;, «Plan Estratégico 2017-2021,» Cuenca, 2019.
[11] CELEC EP, «Plan Estratégico 2017-2021,» Cuenca, 2019.
[12] G. Argüello, INFORME OPERATIVO ANUAL, 2019.







