Análisis de Variables Temporales para la Predicción del Consumo Eléctrico
Análisis de Variables Temporales para la Predicción del Consumo Eléctrico
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- Jorge Lara, Mauricio Samper, Graciela Colomé, Predicción a corto plazo de sistemas de medición inteligentes mediante arquitecturas de aprendizaje profundo multivariable y multipaso , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Wilson Sánchez, Diego Echeverría, Santiago Chamba, Andrés Jacho, Carlos Lozada, Despacho Económico de Energía de la Microrred en las Islas Galápagos Utilizando la Plataforma SimSEE , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Alex Mullo, José Reinoso, Marlon Chamba, Carlos Lozada, Análisis y Caracterización de la Calidad de Energía utilizando Minería de Datos , Revista Técnica "energía": Vol. 22 Núm. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Carlos Lozada, David Panchi, Wilson Sánchez, Andrés Jacho, Regresión Lineal para la Identificación del Punto de Máxima Potencia en Microrredes Híbridas Implementado en HYPERSIM , Revista Técnica "energía": Vol. 20 Núm. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- Diego Lojano, Juan Palacios, Flujo Óptimo de Sistemas Eléctricos de Potencia con Consideraciones Ambientales , Revista Técnica "energía": Vol. 21 Núm. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
- Andrés Pereira, Roberth Saraguro, Carlos Quinatoa, Evaluación de Pérdidas de Potencia Activa en el Sistema Eléctrico de la Empresa eléctrica Quito (EEQ) Aplicando un Algoritmo de Optimización , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Josue Ortiz, Jefferson Tayupanda, Carlos Quinatoa, Solución al problema de despacho hidrotérmico a corto plazo mediante la programación no lineal aplicada a sistemas de uno y varios nodos , Revista Técnica "energía": Vol. 20 Núm. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- Edison Novoa, Gabriel Salazar Yépez, Eliana Buitrón, Gabriel Salazar Pérez, Propuesta de una Metodología para la Focalización del Subsidio Eléctrico “Tarifa De La Dignidad” en Usuarios Residenciales de las Empresas Eléctricas del Ecuador , Revista Técnica "energía": Vol. 20 Núm. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- Flavio Villacrés, Alexis Torres, Marlo Chamba, Carlos Lozada, Estrategia Adaptativa para el Alivio de Carga en Sistemas Eléctricos de Potencia Basada en Regresión Lineal , Revista Técnica "energía": Vol. 22 Núm. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Cristian Cuji, Jonathan Villarreal, Diseño y Evaluación de un Sistema Fotovoltaico Aislado para Iluminación en Vías Rurales y Carga de Vehículos Eléctricos Basado En Un Enfoque Multipropósito , Revista Técnica "energía": Vol. 20 Núm. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
El problema de la predicción de consumo eléctrico a corto plazo o Short Term Load Forecasting (STLF), es un tema de capital importancia para las empresas de energía en la actualidad, ya que permite un manejo más eficiente, permitiendo un mejor aprovechamiento de los equipos y recursos. La predicción de la demanda es un problema complejo, ya que está relacionada a factores económicos, climáticos, temporales, y su comportamiento varía de una sociedad a otra. Cada uno de estos factores aporta determinadas variables que pueden ser representadas de diferentes maneras, en particular las temporales. Se plantea en este trabajo la hipótesis que el método utilizado para presentar las variables temporales a un sistema de predicción de consumo eléctrico afecta los resultados. Para verificar la hipótesis planteada, consideramos diferentes métodos de representación de estas variables, aplicados al problema de predicción de valores diarios de consumo eléctrico en la provincia de Tucumán, Argentina. La división de la variable temporal en variables día, día de la semana, mes y año en forma individual para cada periodo involucrado en el problema, resultó ser el método más conveniente, obteniendo una mejora de hasta el 10,56% respecto de otros métodos considerados.
Visitas del artículo 790 | Visitas PDF 237








