Flujo Óptimo de Sistemas Eléctricos de Potencia con Consideraciones Ambientales
Contenido principal del artículo
Resumen
Los flujos óptimos de potencia se emplean en sistemas eléctricos para optimizar la distribución de energía eléctrica. En términos generales, se busca minimizar los costos asociados a la generación y distribución de energía eléctrica, mientras se cumplen con las restricciones operativas y de seguridad del sistema. Para lograr esto, se utilizan algoritmos matemáticos que permiten resolver el problema de encontrar el flujo de potencia óptimo, obteniéndose como resultado los flujos en cada línea de transmisión del sistema. Estos algoritmos tienen en cuenta diversos datos de entrada factores, como la demanda de energía, la capacidad de generación de las centrales eléctricas, las restricciones operativas de las líneas de transmisión y los costos asociados a la generación y distribución de energía eléctrica, y tienen como objetivo además buscan maximizar la eficiencia del sistema eléctrico, a través de la minimización de los costos y cumpliendo con las restricciones operativas y de seguridad del sistema. De esta manera en el presente trabajo de investigación se realiza una herramienta propia con programación en MATLAB que determina el flujo óptimo de potencia de un SEP y además considerando las restricciones del sistema, se ha tomado como referencia para el análisis el SEP de 14 barras de la IEEE en donde se obtiene su flujo óptimo de potencia y se analizan las restricciones tanto de emisiones como de costos de los combustibles abarcando de esta manera la optimización de potencia y considerando el tema ambiental.
Descargas
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Aviso de Derechos de Autor
La Revista Técnica "energía" está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.
Citas
F. Ruiz-Tipán and A. Valenzuela, "Literary review of economic environmental dispatch considering bibliometric analysis," Iteckne, vol. 19, no. 1, 2021. [Online]. Available: https://doi.org/10.15332/iteckne.v19i1.2631
F. Ruiz-Tipán and A. Valenzuela, "Despacho económico en centrales de generación térmicas considerando restricciones económicas y ambientales para la operación en isla de una red eléctrica industrial," Brazilian Applied Science Review, pp. 851–871, 2022. [Online]. Available: https://doi.org/10.34115/basrv6n3-002
Y. Bai, X. Wu, and A. Xia, "An enhanced multi‐objective differential evolution algorithm for dynamic environmental economic dispatch of power system with wind power," 2020. [Online]. Available: https://doi.org/10.1002/ese3.827
Z. Hu, Z. Li, C. Dai, X. Xu, Z. Xiong, and Q. Su, "Multiobjective grey prediction evolution algorithm for environmental/economic dispatch problem," IEEE Access, vol. 8, pp. 84162–84176, 2020. [Online]. Available: https://doi.org/10.1109/ACCESS.2020.2992116
F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, and C. Silva, "Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors," J. Mater. Chem. C, vol. 3, no. 1, pp. 10715–10722, 2015. [Online]. Available: https://doi.org/10.1039/b000000x
PSR, "Modelo NCP," 2021.
E. L. Ikpendu and D. Ahmed, "An Overview of the Cosmological Big Bang Theory of the Universe," vol. 18, no. 1, pp. 105–124, 2020.
A. Srivastava, D. K. Das, and P. K. Gupta, "A quantum class topper optimization algorithm to solve combined emission economic dispatch problem," Evol Intell, vol. 15, no. 1, pp. 513–527, 2022. [Online]. Available: https://doi.org/10.1007/s12065-020-00526-1
J. Montano et al., "Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks," Results in Engineering, vol. 16, no. Dc, 2022. [Online]. Available: https://doi.org/10.1016/j.rineng.2022.100654
M. Sulaiman, S. Ahmad, J. Iqbal, A. Khan, and R. Khan, "Optimal operation of the hybrid electricity generation system using multiverse optimization algorithm," Comput Intell Neurosci, vol. 2019, 2019. [Online]. Available: https://doi.org/10.1155/2019/6192980
M. J. Kim, T. S. Kim, R. J. Flores, and J. Brouwer, "Neural-network-based optimization for economic dispatch of combined heat and power systems," Appl Energy, vol. 265, no. February, p. 114785, 2020. [Online]. Available: https://doi.org/10.1016/j.apenergy.2020.114785
L. F. Grisales, B. J. Restrepo Cuestas, and F. E. Jaramillo, "Ubicación y dimensionamiento de generación distribuida: una revisión," Ciencia e Ingeniería Neogranadina, vol. 27, no. 2, pp. 157–176, 2017.
S. M. Shaahid and I. El-Amin, "Techno-economic evaluation of off-grid hybrid photovoltaic-diesel-battery power systems for rural electrification in Saudi Arabia-A way forward for sustainable development," Renewable and Sustainable Energy Reviews, vol. 13, no. 3, pp. 625–633, 2009. [Online]. Available: https://doi.org/10.1016/j.rser.2007.11.017
I. Gonzalez and T. Sonja, "Review on generation and transmission expansion co-planning models under a market environment," 2019.
F. Ruiz-Tipán, C. Barrera-Singana, and A. Valenzuela, "Reactive power compensation using power flow sensitivity analysis and QV curves," 2020 IEEE Andescon, Andescon 2020, 2020. [Online]. Available: https://doi.org/10.1109/ANDESCON50619.2020.9272113
W. Gu et al., "Modeling, planning and optimal energy management of combined cooling, heating and power microgrid: A review," International Journal of Electrical Power and Energy Systems, vol. 54, no. 2014, pp. 26–37, 2014. [Online]. Available: https://doi.org/10.1016/j.ijepes.2013.06.028
Y. Wang, J. Qiu, and Y. Tao, "Optimal Power Scheduling Using Data-Driven Carbon Emission Flow Modelling for Carbon Intensity Control," IEEE Transactions on Power Systems, vol. 37, no. 4, pp. 2894–2905, Jul. 2022. [Online]. Available: https://doi.org/10.1109/TPWRS.2021.3126701
J. G. Yumbla Romero et al., "Probabilistic Optimal Power Flow in Large Scale Electric Transmission Systems," IEEE Latin America Transactions, vol. 21, p. 12, Oct. 2023.
F. Ruiz-Tipan and C. Barrera, "Determinación de la compensación reactiva en paralelo en sistemas de transmisión usando resultados de sensibilidad y curvas QV," 2020.
S.-B. Barragán-Gómez and J. Robles-García, "Costo por el soporte de voltaje de los generadores en sistemas eléctricos con despacho centralizado," 2006.
IEA, "CO2 Emissions in 2022," CO2 Emissions in 2022, 2023. [Online]. Available: https://doi.org/10.1787/12ad1e1a-en
IEA, "Emissions intensity and change in electricity generation," 2023.
W. Gu et al., "Modeling, planning and optimal energy management of combined cooling, heating and power microgrid: A review," International Journal of Electrical Power and Energy Systems, vol. 54, pp. 26–37, 2014.
Y. Wang, J. Qiu, and Y. Tao, "Optimal Power Scheduling Using Data-Driven Carbon Emission Flow Modeling for Carbon Intensity Control," IEEE Transactions on Power Systems, vol. 37, no. 4, pp. 2894–2905, Jul. 2022.
REPSOL, "Energía para nuestro día a día," 2023.
OMI, "Los combustibles en la era de las bajas emisiones de azufre," Revista Ingeniería Naval, p. 2020, 2020.
S. M. A. S. Technology, "Factor de emisión CO2," pp. 4–7, 2022.
Gobierno Del Ecuador, "Ministerio de Energía y Minas," Informe 2022, 2022.
A. Srivastava, D. K. Das, and P. K. Gupta, "A quantum class topper optimization algorithm to solve combined emission economic dispatch problem," Evol. Intell., vol. 15, no. 1, pp. 513–527, 2022.
. Montalvo et al., "Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks," Results in Engineering, vol. 16, Dec. 2022. [Online]. Available: https://doi.org/10.1016/j.rineng.2022.100654
A. Srivastava, D. K. Das, and P. K. Gupta, "A quantum class topper optimization algorithm to solve combined emission economic dispatch problem," Evol. Intell. vol. 15, no. 1, pp. 513–527, 2022.