Optimización de Costos de Producción con el Uso Programación Lineal Entera en la Planeación de la Producción para el Control de Inventario de Materias Primas
Optimization of Production Costs Using Integer Linear Programming in Production Planning for Raw Material Inventory Control
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- William Quitiaquez, Isaac Simbaña, Robinson Caizatoa, César Isaza, César Nieto, Patricio Quitiaquez, Fernando Toapanta, Análisis del rendimiento termodinámico de una bomba de calor asistida por energía solar utilizando un condensador con recirculación , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- Paulina Vásquez, Michelle Nieto, Jaime Cepeda, Propuesta metodológica para gestionar la Transferencia de Conocimiento individual a la organización, caso: CENACE , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- Terry Solis, Cristina Calderón, Yang Liu , Optimización de la Producción de Xilanasa Bacteriana a Partir de Bacillus sp. K1 con el Uso de Residuos Lignocelulósicos , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- Jorge Cepeda, Primer Laboratorio de Ensayos Estructurales Virtuales de Autobuses en Latinoamérica: Innovación y Acreditación , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- Diego Jiménez, Xavier Proaño, Diseño de un Sistema de Alumbrado LED a través de Energía Fotovoltaica para Brindar Niveles de Calidad de Iluminación en el Parqueadero N° 1 de la Universidad Técnica de Cotopaxi , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- Christian Ortiz, Gabriel Salazar, Metodología para la Planificación y Control de la Ejecución de Mantenimientos Preventivos y Correctivos de Líneas de Subtransmisión , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- Christian Gutierrez, Joseph Venegas, Análisis Nodal para determinar el punto óptimo de operación entre producción de petróleo y producción de GLP, maximizando el recurso energético de la Estación de producción de Petróleo, Aguarico , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- Walter Vargas, Pablo Verdugo, Validación e Identificación de Modelos de Centrales de Generación Empleando Registros de Perturbaciones de Unidades de Medición Fasorial, Aplicación Práctica Central Paute - Molino , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- W. Quitiaquez, A. Simbaña, I. Simbaña, C. Isaza, C. Nieto, P. Quitiaquez, F. Toapanta, Análisis Comparativo entre el Aceite Mineral y el Aceite Vegetal Utilizados como Dieléctricos y Refrigerantes para Transformadores de Potencia , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
- Javier Martínez , Mario Bustamante , Paolo Salazar , José Macias , A. P. Lobato, Ricardo Narváez , Martin Cordovez , Caracterización Térmica y Mecánica de la Madera de Roble , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
Artículos más leídos del mismo autor/a
- Kleber Zhañay, Cristian Leiva, Erika Pilataxi, William Quitiaquez, Modelo de Correlación Desgaste - Cantidad de Sedimentos para la Programación de Mantenimiento Preventivo de una central Hidroeléctrica , Revista Técnica "energía": Vol. 21 Núm. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
El presente estudio propone una metodología de reducción de costos en los procesos de fabricación de cuerpos de grifería sanitaria, basada en un modelo de programación lineal entera (PLE) que optimiza la planeación de la producción manteniendo el control de inventarios dentro de límites establecidos. El modelo integra restricciones económicas, logísticas y ambientales, como cupos de importación, capacidad de producción y reutilización de chatarra de latón generada en operaciones de mecanizado. Mediante la implementación del modelo en el lenguaje R y el paquete lpSolve, se determinó la combinación óptima de materias primas —lingotes vírgenes, varilla y material reciclado— para cada lote de producto, minimizando los costos de producción bajo condiciones de disponibilidad de material y almacenamiento. Los resultados evidenciaron un ahorro acumulado de 73 341 USD durante seis meses consecutivos y la reducción del inventario promedio de material para fundir de 116 t a 62 t, demostrando la efectividad del modelo para una producción sostenible. La metodología propuesta es escalable a otros contextos manufactureros con múltiples rutas o restricciones de suministro
Visitas del artículo 11 | Visitas PDF 5
Descargas
- [1] S. S. Chauhan and P. Kotecha, “An efficient multi-unit production planning strategy based on continuous variables,” Applied Soft Computing Journal, vol. 68, pp. 458–477, 2018, doi: 10.1016/j.asoc.2018.03.012.
- [2] G. Bayá, P. Sartor, F. Robledo, E. Canale, and S. Nesmachnow, A Case Study of Smart Industry in Uruguay: Grain Production Facility Optimization, vol. 1555 CCIS. 2022. doi: 10.1007/978-3-030-96753-6_8.
- [3] J. I. P. Rave and G. P. J. Álvarez, “Application of mixed-integer linear programming in a car seat assembling process,” Pesquisa Operacional, vol. 31, no. 3, pp. 593–610, 2011, doi: 10.1590/S0101-74382011000300011.
- [4] F. Dianawati and H. Fatoni, “Determining the optimal inventory holding time using mixed integer linear programming (MILP) in a forwarder company,” in AIP Conference Proceedings, 2024. doi: 10.1063/5.0242084.
- [5] J. M. Izar Landeta, C. B. Ynzunza Cortés, and O. Guarneros García, “Variabilidad de la demanda del tiempo de entrega, existencias de seguridad y costo del inventario,” Contaduria y Administracion, vol. 61, no. 3, pp. 499–513, Jul. 2016, doi: 10.1016/j.cya.2015.11.008.
- [6] A. Gholipoor, M. M. Paydar, and A. S. Safaei, “A faucet closed-loop sup-ply chain network design considering used faucet exchange plan,” J Clean Prod, vol. 235, pp. 503–518, Oct. 2019, doi: 10.1016/j.jclepro.2019.06.346.
- [7] J. Johansson, L. Ivarsson, J. E. Ståhl, V. Bushlya, and F. Schultheiss, “Hot Forging Operations of Brass Chips for Material Reclamation after Ma-chining Operations,” in Procedia Manufacturing, Elsevier B.V., 2017, pp. 584–592. doi: 10.1016/j.promfg.2017.07.152.
- [8] V. Agrawal, R. P. Mohanty, S. Agarwal, J. K. Dixit, and A. M. Agrawal, “Analyzing critical success factors for sustainable green supply chain management,” Environ Dev Sustain, vol. 25, no. 8, pp. 8233–8258, 2023, doi: 10.1007/s10668-022-02396-2.
- [9] A. Loibl and L. A. Tercero Espinoza, “Current challenges in copper recycling: aligning insights from material flow analysis with technological re-search developments and industry issues in Europe and North America,” Resour Conserv Recycl, vol. 169, Jun. 2021, doi: 10.1016/j.resconrec.2021.105462.
- [10] P. Asadi, M. Akbari, A. Armani, M. R. M. Aliha, M. Peyghami, and T. Sadowski, “Recycling of brass chips by sustainable friction stir extrusion,” J Clean Prod, vol. 418, no. June, p. 138132, 2023, doi: 10.1016/j.jclepro.2023.138132.
- [11] A. I. Kibzun and V. A. Rasskazova, “Linear Integer Programming Model as Mathematical Ware for an Optimal Flow Production Planning System at Operational Scheduling Stage,” Automation and Remote Control, vol. 84, no. 5, pp. 529–542, 2023, doi: 10.1134/S0005117923050065.
- [12] H. Su, N. Zhou, Q. Wu, Z. Bi, and Y. Wang, “Investigating price fluctuations in copper futures: Based on EEMD and Markov-switching VAR model,” Resources Policy, vol. 82, May 2023, doi: 10.1016/j.resourpol.2023.103518.
- [13] J. M. Izar Landeta, C. B. Ynzunza Cortés, and E. Zermeño Pérez, “Calculation of reorder point when lead time and demand are correlated,” Contaduria y Administracion, vol. 60, no. 4, pp. 864–873, Oct. 2015, doi: 10.1016/j.cya.2015.07.003.
- [14] Patrão, R. L., & Napoleone, A. (2024). Decision Making under Uncertainty for Reconfigurable Manufacturing Systems: A framework for uncertainty representation. IFAC-PapersOnLine, 58(19), 103–108. https://doi.org/10.1016/j.ifacol.2024.09.102
- [15] Napoleone, A., Andersen, A.-L., Brunoe, T. D., & Nielsen, K. (2023). Towards human-centric reconfigurable manufacturing systems: Literature review of reconfigurability enablers for reduced reconfiguration effort and classification frameworks. Journal of Manufacturing Systems, 67, 23–34. https://doi.org/10.1016/j.jmsy.2022.12.014
- [16] Barrera-Diaz, C. A., Nourmohammadi, A., Smedberg, H., Aslam, T., & Ng, A. H. C. (2023). An Enhanced Simulation-Based Multi-Objective Optimization Approach with Knowledge Discovery for Reconfigurable Manufacturing Systems. Mathematics, 11(6). https://doi.org/10.3390/math11061527
- [17] Ang, C. W., Yahaya, S. H., Salleh, M. S., & Cahyadi, N. (2025). A Comprehensive Review of Different Approaches used by Manufacturing Industries in Handling Capacity Planning under Demand Uncertainties. Journal of Advanced Research in Applied Sciences and Engineering Technology, 50(1), 88–106. https://doi.org/10.37934/araset.50.1.88106
- [18] Moghaddam, S. K., Houshmand, M., Saitou, K., & Fatahi Valilai, O. (2020). Configuration design of scalable reconfigurable manufacturing systems for part family. International Journal of Production Research, 58(10), 2974–2996. https://doi.org/10.1080/00207543.2019.1620365
- [19] Imseitif, J., & Nezamoddini, N. (2020). Macro and micro-production planning for reconfigurable manufacturing systems. Proceedings of the 2020 IISE Annual Conference, 784–789.
- [20] Gainanov, D. N., Berenov, D. A., Nikolaev, E. A., & Rasskazova, V. A. (2022). Integer Linear Programming in Solving an Optimization Problem at the Mixing Department of the Metallurgical Production. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 13621 LNCS. https://doi.org/10.1007/978-3-031-24866-5_12
- [21] Rasskazova, V. A. (2024). LIP Model in Solving RCPSP at the Flow Type Production. In Communications in Computer and Information Science: Vol. 1913 CCIS. https://doi.org/10.1007/978-3-031-48751-4_6
- [22] Angizeh, F., Montero, H., Vedpathak, A., & Parvania, M. (2020). Optimal production scheduling for smart manufacturers with application to food production planning. Computers and Electrical Engineering, 84. https://doi.org/10.1016/j.compeleceng.2020.106609
- [23] Coronado-Hernandez, J. R., de la Hoz, L., Leyva, J., Ramos, M., & Zapatero, O. (2020). Linear programming model to minimize the production costs of an adhesive tape company | Modelo programación lineal para minimizar los costos de producción de una empresa de cintas adhesivas. Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology. https://doi.org/10.18687/LACCEI2020.1.1.369
- [24] Vanli, A. S., & Karas, M. H. (2025). Material and Process Modification to Improve Manufacturability of Low-Lead Copper Alloys by Low-Pressure Die Casting Method. Metals, 15(2). https://doi.org/10.3390/met15020205
- [25] Ying, K.-C., Lin, S.-W., Pourhejazy, P., & Lee, F.-H. (2025). Production scheduling of additively manufactured metal parts. CIRP Journal of Manufacturing Science and Technology, 57, 100–115. https://doi.org/10.1016/j.cirpj.2025.01.005
- [26] Yang, Z., & Liu, S. (2025). Fairness-oriented multi-objective optimization of supply chain planning under uncertainties. Socio-Economic Planning Sciences, 99. https://doi.org/10.1016/j.seps.2025.102198








