Análisis de la Influencia Temporal y Geográfica del Muestreo sobre las Propiedades Fisicoquímicas de FORSU en Manabí, Ecuador
Analysis of the Temporal and Geographical Influence of Sampling on the Physicochemical Properties of FORSU in Manabí, Ecuador.
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- Isaac Simbaña, William Quitiaquez, Patricio Cabezas, Patricio Quitiaquez, Estudio comparativo de la eficiencia de colectores solares de placa plana rectangular y triangular mediante el método de elementos finitos , Revista Técnica "energía": Vol. 20 Núm. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- Andrés Pereira, Roberth Saraguro, Carlos Quinatoa, Evaluación de Pérdidas de Potencia Activa en el Sistema Eléctrico de la Empresa eléctrica Quito (EEQ) Aplicando un Algoritmo de Optimización , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Dylan Torres, Patricia Gavela, Edison Novoa, Daniela Agila, Impacto de la Conexión de Generación Distribuida Instalada de Manera Concentrada o Dispersa en Redes de Distribución Desbalanceadas de Medio y Bajo Voltaje , Revista Técnica "energía": Vol. 22 Núm. 2 (2026): Revista Técnica "energía", Edición No. 22 ISSUE II
- Sasha Palacios, Metodología para Calcular los Límites de Estabilidad Estática de Ángulo en el Sistema Nacional Interconectado (SNI) Ecuatoriano Usando el Criterio de Áreas Iguales y Mediciones Sincrofasoriales , Revista Técnica "energía": Vol. 22 Núm. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Jorge Lara, Mauricio Samper, Graciela Colomé, Predicción a corto plazo de sistemas de medición inteligentes mediante arquitecturas de aprendizaje profundo multivariable y multipaso , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Alan Cuenca, Cristina Oña, Ismael Suquillo, Henry Miniguano, Metodología de Diseño de Sistemas Aislados de Energía Solar Fotovoltaica para Áreas Rurales en Ecuador , Revista Técnica "energía": Vol. 20 Núm. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- Gabriel Guañuna, Graciela Colomé, Estefanía Tapia, Predicción del Estado de Estabilidad de Corto Plazo en Sistemas de Potencia con Integración de Generación Renovable Utilizando Aprendizaje Profundo , Revista Técnica "energía": Vol. 22 Núm. 2 (2026): Revista Técnica "energía", Edición No. 22 ISSUE II
- Jorge Leon, Graciela Colomé, Estefanía Tapia, Identificación de Generadores Críticos ante Problemas de Estabilidad Transitoria , Revista Técnica "energía": Vol. 21 Núm. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
- William Quitiaquez, Hugo Meneses, Patricio Quitiaquez, Isaac Simbaña, Regeneración de Componentes Deteriorados de Motores de Combustión Interna Utilizados en Centrales Térmicas , Revista Técnica "energía": Vol. 21 Núm. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
- Wilson Vásquez, Evaluación del Factor de Potencia en Usuarios con Equipos de Generación para Autoabastecimiento , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
El crecimiento demográfico y el desarrollo de la sociedad han incrementado de forma significativa la generación de residuos, cuya acumulación en vertederos ocasiona impactos ambientales y riesgos sanitarios para las poblaciones cercanas. En este estudio se recolectaron muestras de la fracción orgánica de los residuos sólidos urbanos (FORSU) en cinco mercados de distintos cantones de la provincia de Manabí, considerando diferentes temporalidades. Posteriormente, se realizó la caracterización fisicoquímica mediante análisis proximal y determinación del poder calorífico superior, complementada con un análisis estadístico para evaluar la influencia de la temporalidad y la ubicación geográfica sobre sus propiedades. Los resultados obtenidos permiten establecer criterios para definir los posibles usos de la FORSU y su potencial de valorización energética a través de procesos de conversión termoquímica.
Visitas del artículo 10 | Visitas PDF 1
Descargas
- [1] Z. Lenkiewicz, “Global Waste Management Outlook 2024 - Beyond an age of waste: Turning rubbish into a resource,” United Nations Environ. Program., Feb. 2024, doi: 10.59117/20.500.11822/44939.
- [2] M. Gunamantha, “Prediction of Higher Heating Value Bioorganic Fraction of Municipal Solid Waste from Proximate Analysis Data,” Int. J. Eng. Res. Technol., vol. 5, no. 2, pp. 442–447, 2016, [Online]. Available: http://www.ijert.org
- [3] D. Martínez, L. Díaz, O. Aguilar, and S. Hernández, “Characterization of municipal solid waste with the perspective of biofuels and bioproducts recovery in Northeast Mexico,” J. Mater. Cycles Waste Manag., vol. 26, no. 6, pp. 3665–3680, Nov. 2024, doi: 10.1007/s10163-024-02069-4.
- [4] Instituto Nacional de Estadística y Censos (INEC), “Estadística de Información Ambiental Económica en Gobiernos Autónomos Descentralizados Municipales Gestión de Residuos Sólidos 2023,” 2024. [Online]. Available: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Encuestas_Ambientales/Municipios/2023/Residuos_Solidos/Presentacion_GRS_2023.pdf
- [5] Instituto de Gobernanza del Parlamento Andino, “Diagnóstico: Situación actual de la gestión de Residuos domiciliarios sólidos en la República del Ecuador y sus principales ciudades: Guayaquil, Quito y Cuenca,” 2024. [Online]. Available: https://lametro.edu.ec/wp-content/uploads/2024/07/GESTION-DE-RESIDUOS-DIAGNOSTICO-3.pdf
- [6] I. Cruz, I. Campuzano, and J. Camino, “El impacto ambiental que ocasiona el basurero a cielo abierto en el recinto La Hernestina del cantón Montalvo,” Uniandes EPISTEME, vol. 7, no. Especial, pp. 643–654, 2020.
- [7] G. Kiss and G. Aguilar, “Los productos y los impactos de la descomposición de residuos sólidos urbanos en los sitios de disposición final,” Gac. Ecológica, vol. 79, pp. 39–51, 2006, [Online]. Available: http://estudiosterritoriales.org/resumen.oa?id=53907903
- [8] E. Escalona, “Daños a la salud por mala disposición de residuals sólidos y líquidos en Dili, Timor Leste,” Rev. Cubana Hig. Epidemiol., vol. 52, no. 2, pp. 270–277, 2014.
- [9] Instituto Nacional de Estadística y Censos (INEC), “Encuesta de Superficie y Producción Agropecuaria Continua, ESPAC 2023,” 2024. [Online]. Available: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_agropecuarias/espac/2023/Principales_resultados_ESPAC_2023.pdf
- [10] D. L. Mantuano Garcia and J. C. Luque Vera, “Sector agropecuario y su aporte en el crecimiento económico de la provincia de Manabí – Ecuador,” Ciencias Soc. y Económicas, vol. 9, no. 1, pp. 115–128, 2025, doi: 10.18779/csye.v9i1.928.
- [11] Prefectura de Manabí, “Actualización del Paln de Desarrollo y Ordenamiento Territorial Manabí 2030,” 2022. [Online]. Available: https://www.manabi.gob.ec/wp-content/uploads/2021/09/I_PDOT_Manabi_2030_compressed.pdf#page=175&zoom=100,109,926
- [12] Instituto Nacional de Estadística y Censos (INEC), “Resultados Nacionales Definitivos Censo 2022,” 2024.
- [13] E. of S. Technologies, “Lignocellulosic Biomass.” [Online]. Available: https://www-sciencedirect-com.translate.goog/topics/engineering/lignocellulosic-biomass?_x_tr_sl=en&_x_tr_tl=es&_x_tr_hl=es&_x_tr_pto=tc
- [14] L. Rodríguez, I. López, V. Ocaña, and R. Pérez, “Tendencias de investigación y desarrollo . Biomass thermo-conversion by pyrolysis . Trends in research and development .,” Cent. Azúcar, vol. 39, no. 1, pp. 27–32, 2012.
- [15] M. Fernández, J. Rodrigo, and M. Rodrigo, “Alternativas de valorización y eliminación de residuos sólidos urbanos,” Industriambiente, no. December 2014, 2014, [Online]. Available: https://www.researchgate.net/publication/303664152_Alternativas_de_valorizacion_y_eliminacion_de_residuos_solidos_urbanos/related
- [16] J. Kim, F. Jaumotte, A. J. Panton, and G. Schwerhoff, “Energy security and the green transition,” Energy Policy, vol. 198, p. 114409, Mar. 2025, doi: 10.1016/j.enpol.2024.114409.
- [17] A. Vilches, J. C. Toscano, D. Gill, and Ó. Macías, “La Transición Energética. Una Nueva Cultura de la Energía,” OEI. ISBN 978-84-7666-213-7, no. January, 2014, [Online]. Available: https://www.researchgate.net/publication/302412294_La_Transicion_Energetica_Una_Nueva_Cultura_de_la_Energia
- [18] Secretaria de Comercio y Fomento Industrial (SECOFI), “Norma Mexicana NMX-AA-015-1985. Proteccion al Ambiente - Contaminacion del Suelo - Residuos Sólidos Municipales - Muestreo - Método de Cuarteo. Secretaría de Comercio y Fomento Industrial,” 1985.
- [19] B. Hames, R. Ruiz, C. Scarlata, A. Sluiter, J. Sluiter, and D. Templeton, “Preparation of Samples for Compositional Analysis: Laboratory Analytical Procedure (LAP); Issue Date 08/08/2008,” no. August, 2008.
- [20] ISO/TC 238, Norma ISO 18134-2:2017 “Solid biofuels — Determination of moisture content — Oven dry methodPart 2: Total moisture — Simplified method,” 2nd ed. 2017. [Online]. Available: https://www-iso-org.translate.goog/standard/71536.html?_x_tr_sl=en&_x_tr_tl=es&_x_tr_hl=es&_x_tr_pto=tc
- [21] ISO/TC 238, Norma UNE-EN ISO 18123 “Solid biofuels — Determination of volatile matter,” 2nd ed. 2023. [Online]. Available: https://www.iso.org/es/contents/data/standard/08/31/83192.html?browse=tc
- [22] ISO/TC 238, Norma ISO 18122:2015 “Solid biofuels — Determination of ash content,” 1st ed. 2015. [Online]. Available: https://www.iso.org/es/contents/data/standard/06/15/61515.html
- [23] ISO/TC 238, Norma ISO 18125:2017 “Solid biofuels — Determination of calorific value,” 1st ed. 2017. [Online]. Available: https://www-iso-org.translate.goog/standard/61517.html?_x_tr_sl=en&_x_tr_tl=es&_x_tr_hl=es&_x_tr_pto=tc
- [24] SixSigma, “A Complete Guide to the Anderson-Darling Normality Test.” [Online]. Available: https://www.6sigma.us/six-sigma-in-focus/anderson-darling-normality-test/
- [25] W. Navidi, Statistics for Engineers and Scientist. Colorado, EEUU: The McGraw-Hill Companies, Inc., 2006.
- [26] Soporte de Minitab, “Métodos y fórmulas para el análisis de varianza en ANOVA de un solo factor.” [Online]. Available: https://support.minitab.com/es-mx/minitab/help-and-how-to/statistical-modeling/anova/how-to/one-way-anova/methods-and-formulas/analysis-of-variance/
- [27] K. Moore, R. Mowers, M. L. Harbur, L. Merrick, and A. Assibi, “Mean Comparisons,” in Quantitative Methods for Plant Breeding, 2023, ch. 10. [Online]. Available: https://iastate-pressbooks-pub.translate.goog/quantitativeplantbreeding/chapter/mean-comparisons/?_x_tr_sl=en&_x_tr_tl=es&_x_tr_hl=es&_x_tr_pto=tc
- [28] M. I. Awad, Y. Makkawi, and N. M. Hassan, “Yield and Energy Modeling for Biochar and Bio-Oil Using Pyrolysis Temperature and Biomass Constituents,” ACS Omega, vol. 9, no. 16, pp. 18654–18667, Apr. 2024, doi: 10.1021/acsomega.4c01646.
- [29] B. Esteves, U. Sen, and H. Pereira, “Influence of Chemical Composition on Heating Value of Biomass: A Review and Bibliometric Analysis,” Energies, vol. 16, no. 10, p. 4226, May 2023, doi: 10.3390/en16104226.
- [30] W. Zhang and Y. Qi, “ANOVA-nSTAT: ANOVA methodology and computational tools in the paradigm of new statistics,” vol. 14, pp. 48–67, Mar. 2024.
- [31] D. J. Horst, J. J. Ramírez Behainne, P. P. de Andrade Júnior, and J. L. Kovaleski, “An experimental comparison of lignin yield from the Klason and Willstatter extraction methods,” Energy Sustain. Dev., vol. 23, pp. 78–84, Dec. 2014, doi: 10.1016/j.esd.2014.07.005.
- [32] A. G. Jardón-Medina and A. Ortiz-Fernández, “Obtención y caracterización de biocarbón a partir de Eichhornia crassipes usando un prototipo de reactor de pirólisis solar,” Rev. Ciencias Ambient., vol. 57, no. 1, pp. 1–23, Dec. 2022, doi: 10.15359/rca.57-1.13.
- [33] College of Earth and Mineral Sciences. The Pennsylvania State University, “Lesson 4: Biomass Pyrolysis and Pretreatment Overview,” EGEE 439: Alternative Fuels from Biomass. [Online]. Available: https://courses.ems.psu.edu/egee439/node/525
- [34] Y. Elhenawy et al., “Experimental analysis and numerical simulation of biomass pyrolysis,” J. Therm. Anal. Calorim., vol. 149, no. 19, pp. 10369–10383, 2024, doi: 10.1007/s10973-024-12987-y.
- [35] L. F. Pintor-ibarra and F. D. Mendez, “Capítulo 5: Caracterización proximal de los biocombustibles sólidos,” no. April 2024, 2023.
- [36] S. Gundekari, J. Mitra, and M. Varkolu, “Classification, characterization, and properties of edible and non-edible biomass feedstocks,” in Advanced Functional Solid Catalysts for Biomass Valorization, Elsevier, 2020, pp. 89–120. doi: 10.1016/B978-0-12-820236-4.00004-0.
- [37] Y. Gao et al., “Syngas Production from Biomass Gasification: Influences of Feedstock Properties, Reactor Type, and Reaction Parameters,” ACS Omega, vol. 8, no. 35, pp. 31620–31631, Sep. 2023, doi: 10.1021/acsomega.3c03050.








