Transmission Corridor Stability Margin Prediction Applying Data Mining Criteria and Machine Learning Algorithms
Predicción del Margen de Estabilidad de Corredores de Transmisión Aplicando Criterios de Minería de datos y Algoritmos de Machine Learning
How to Cite
Download Citation
Show authors biography
Similar Articles
- Carlos Molina, Vladimir Bonilla, Application of CRISP-DM Methodology in the Analysis of Dissolved Gases in Dielectric oil of Electrical Transformers in the Ecuadorian Electrical Sector , Revista Técnica "energía": Vol. 21 No. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Rolando Noroña, Edgar Cajas, Carlos Lozada, Marlon Chamba, Transient Stability Analysis Using the Concept of Inertia and Data Mining , Revista Técnica "energía": Vol. 22 No. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Jorge Lara, Mauricio Samper, Graciela Colomé, Short-Term Prediction of Smart Metering Systems by Multivariable and Multistep Deep Learning Architectures , Revista Técnica "energía": Vol. 21 No. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- José Castro, Paúl Soto, Ruth Reategui, Tuesman Castillo, Partitioning of an Electrical Distribution Systems Using K-Means and DBSCAN Clustering Algorithms , Revista Técnica "energía": Vol. 20 No. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- Alex Mullo, José Reinoso, Marlon Chamba, Carlos Lozada, Analysis and Characterization of Power Quality using Data Mining , Revista Técnica "energía": Vol. 22 No. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Paulo Castro, Jaime Cepeda, Impact Analysis of Non-Dispatchable Renewable Energies Penetration in Power System Operational Security , Revista Técnica "energía": Vol. 22 No. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Julio Lascano, Luis Chiza, Roberth Saraguro, Carlos Quinatoa, Jessy Tapia, Demand Estimation for an Electric Vehicles Charging Station Through the Application of Probabilistic Methods , Revista Técnica "energía": Vol. 20 No. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- Jorge Leon, Graciela Colomé, Estefanía Tapia, Identification of Critical Generators in Transient Stability Problems , Revista Técnica "energía": Vol. 21 No. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
- Daniel Jiménez, Wilson Andino, Mauricio Soria, Fabián Pérez, Optimal Coordination of Inverse Time Overcurrent Relays using COA and GSA Heuristic Algorithms , Revista Técnica "energía": Vol. 21 No. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Sasha Palacios, Ecuadorian National Interconnected System (SNI) Using the Equal Area Criterion and Synchrophasor Measurements , Revista Técnica "energía": Vol. 22 No. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Julio Lascano, Luis Chiza, Roberth Saraguro, Carlos Quinatoa, Jessy Tapia, Demand Estimation for an Electric Vehicles Charging Station Through the Application of Probabilistic Methods , Revista Técnica "energía": Vol. 20 No. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- Jorge Paredes, Jaime Cepeda, Jorge Lozada, Parameters for the Grinding Process in Vertical Mills Using Optimization Methods , Revista Técnica "energía": Vol. 20 No. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- Felipe Riascos, Jaime Cepeda , Mathematical Modeling of Speed Control System of Generation Units from Coca Codo Sinclair Hydroelectric Power Plant , Revista Técnica "energía": Vol. 18 No. 1 (2021): Revista Técnica "energía", Edición No. 18, ISSUE I
- Diego Echeverria Jurado, Carlos Jaramillo, Jorge Benítez, Jaime Cepeda, Hugo Arcos, Impact Analysis of non-conventional renewable energies on the long-term operational planning of the National Interconnected System using the SimSEE platform , Revista Técnica "energía": Vol. 19 No. 1 (2022): Revista Técnica "energía", Edición No. 19, ISSUE I
- Gabriel Guañuna, Santiago Chamba, Nelson Granda, Jaime Cepeda, Diego Echeverría, Walter Vargas, Voltage Stability Margin Estimation Using Machine Learning Tools , Revista Técnica "energía": Vol. 20 No. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- Luis Pazmiño, Diego Echeverría, Jaime Cepeda, Electromagnetic Transients Analysis in the Interconnected National System (S.N.I.) at 230 kV and 500 kV voltage level using the real-time digital simulator HYPERsim , Revista Técnica "energía": Vol. 15 No. 1 (2018): Revista Técnica "energía", Edición No. 15
- Jaime Cepeda, Santiago Chamba, Battery State of Charge Stochastic Model determination for Microgrids Probabilistic Power Flow computation , Revista Técnica "energía": Vol. 16 No. 1 (2019): Revista Técnica "energía", Edición No. 16
- Carlos Del Hierro, Jaime Cepeda, Caracterización y simulación de fenómenos dinámicos relacionados con la actuación de un horno de arco eléctrico conectado al sistema eléctrico de potencia de Ecuador , Revista Técnica "energía": Vol. 17 No. 2 (2021): Revista Técnica "energía", Edición No. 17, ISSUE II
- Joffre Constante, Augusto Riofrío, Aharon De La Torre, Jaime Cepeda, Methodology for Steady-State and Dynamic Modelling of S.N.I in HYPERsim, Application in the Electromagnetic Transient Analysis for 500 kV Systems , Revista Técnica "energía": Vol. 16 No. 2 (2020): Revista Técnica "energía", Edición No. 16
- Augusto Riofrío, Marlon Chamba, Jaime Cepeda, Yirabel Lecaro, Franklin Chimarro, Miguel Mora, Evaluación Probabilística y Gestión del Riesgo de la Cargabilidad de la Red por la Puesta en Servicio del Metro de Quito considerando el Movimiento Estocástico de los Trenes Eléctricos , Revista Técnica "energía": Vol. 15 No. 2 (2019): Revista Técnica "energía", Edición No. 15
Voltage Stability refers to the ability of the system to maintain acceptable voltages in all busbars, considering normal operating conditions and after being subjected to a disturbance. The present work predicts the critical parameters of the system based on the P-V Curve determined by the Thévenin's Equivalent in a transmission corridor. A dataset is obtained via Monte Carlo simulations performed on the 39-bus test system model in PowerFactory controlled by Python. Given an operating condition, N simulations are performed to establish different system operating conditions under variations in the values of each of the system loads. From the obtained dataset, Data Mining is applied to train regression models based on artificial neural networks and support vector machines to predict the maximum power transfer condition. Afterwards, the MSE (Mean-squared error) is used to analyze the performance of the regression models. The proposed methodology can be applied in control centers to predict the maximum transfer power point of a congested transmission corridor. This prediction offers early warning signs in operations and might allow structuring criteria for security constrained dispatch in planning.
Article visits 1276 | PDF visits 589
Downloads
[1] J. Cepeda, P. Verdugo y G. Arguello, «Monitoreo de la Estabilidad de Voltaje de Corredores de Transmisión en Tiempo Real a partir de Mediciones Sincrofasoriales,» Revista EPN, vol. 33, nº 3, 2014.
[2] M. Larsson, C. Rehtanz y J. Bertsch, «Monitoring and operation of transmission corridors,» IEEE Power Tech Conference Proceedings, vol. 3, 2003.
[3] J. Cepeda y D. Colome, «Vulnerability Assesment of Electric Power Systems Through Identification and Ranking of Vulnerable Areas,» International Journal of Emerging Electric Power Systems, vol. 13, nº 1, 2006.
[4] «Neural Network models (supervised),» scikit learn, 2020. [En línea]. Available: https://scikit-learn.org/stable/modules/neural_networks_supervised.html.
[5] ICHI.PRO, «Funciones de activación en DNN,» 2021. [En línea].
[6] A. Ben-Hur y J. Weston, « A user’s guide to support vector machines,» Methods in Molecular Biology, vol. 609, pp. 223-239, 2010.
[7] R. Batuwita y V. Palade, «Class imbalance learning methods for support vector,» Imbalanced Learning: Foundations, Algorithms, Applications, pp. 83-100, 2013.
[8] S. Khalid, T. Khalil y S. Nasreen, «A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning,» Science and Information Conference, 2014.
[9] A. Olalekan y S. Jain, «Feature Extraction: A Survey of the Types, Techniques, Applications,» International Conference on Signal Processing and Communication (ICSC), 2019.
[10] P. Prathusha y S. Jyothi, «Feature Extraction Methods: A Review,» International Journal of Innovative Research in Science, Engineering and Technology, vol. 6, nº 12, 2017.
[11] C. Syms, «Principal Components Analysis,» de Encyclopedia of Ecology, 2019, pp. 566-573.
[12] S. Brown, «Machine learning, explained,» 21 April 2021. [En línea].
[13] D. A. Pisner y D. M. Schnyer, «Support vector machine,» de Machine Learning, 2020, pp. 101-121.
[14] R. Bhaumik, L. M. Jenkins, J. R. Gowins, R. H. Jacobs, A. Barba y D. K. Bhaumik, «Multivariate pattern analysis strategies in detection of remitted major depressive disorder using resting state functional connectivity,» NeuroImage: Clinical, vol. 16, pp. 390-398, 2017.
[15] «Support Vector Machines,» scikit learn, 2020. [En línea]. Available: https://scikit-learn.org/stable/modules/svm.html#svm-regression.
[16] «SVM Hyperparameter Tuning using GridSearchCV,» Velocity Business, 2020. [En línea]. Available: https://www.vebuso.com/2020/03/svm-hyperparameter-tuning-using-gridsearchcv/














